library(whoppeR) library(tidyr) library(reshape2) library(ggplot2) library(dplyr) library(FAM) library(grid) library(gridExtra) library(pander) library(wesanderson) knitr::opts_chunk$set(echo = FALSE,fig.width=11,fig.height=7,cache=FALSE, warning=F, message=FALSE, fig.align='center')
labels<-function(x,y) { half_list <- list('1' = "First Half Cues", '2'="Second Half Cues") prac_type_list<- list('C' = 'No Practice', 'S' = 'Study', 'T' = 'Test') if (x=='half') { return(half_list[y]) } else if (x=='prac_type') { return(prac_type_list[y]) } else { return(y) } } my_scale <- scale_fill_brewer("Other Cue\nPractice Type", breaks= c("none","C", "S","T"), labels = c("No Other Cue", "No Practice", "Study","Test"), guide = guide_legend(keyheight = unit(1,'cm')), palette="Set1")
subject_means <- badSubs(SCKT_allSs)$means sub_means_plot <- ggplot(badSubs(SCKT_allSs)$means, aes(prac_acc,final_acc)) + geom_point(size=4) + geom_point(size =4, shape =25, fill = "red", aes(x=mean(prac_acc),y=mean(final_acc,na.rm=T))) + scale_x_continuous("Practice Test Accuracy",limits=c(0,1)) + ylab("Final Test Accuracy") + theme_larger() + ggtitle("Average Performace by Subject") print(sub_means_plot)
Single Linkage Heirarchical Clustersing based on Euclidian Distance
clusters <- findSubjectClusters(SCKT_allSs, cut= 4) clusters$cluster[,] <- lapply(clusters$cluster,factor) SCKT_allSs <- left_join(SCKT_allSs, clusters$cluster) plot(clusters$tree)
IVxSS <- IVsummary(SCKT_allSs, grouping.vars =c("subject","half","practice","other_type")) IV <- IVsummary(SCKT_allSs, grouping.vars =c("half","practice","other_type")) IVplot <- ggplot(mutate(IV, other_type = as.character(other_type) %>% replace(is.na(.), "none")), aes(x=practice,y=final_score,fill=other_type)) + geom_bar(position='dodge',stat="identity",drop=F) + facet_grid(~ half, labeller = label_both) + ylab("Final Test Accuracy") + scale_fill_manual("Other Cue\nPractice Type", breaks= c("none","C", "S","T"), labels = c("No Other Cue", "No Practice", "Study","Test"), guide = guide_legend(keyheight = unit(1,'cm')), values=wes_palette("Darjeeling")) + scale_x_discrete("Cue Practice", labels = c(C="No Practice",S="Study",`T` = "Test")) + theme(strip.text.x = element_text(size = 20), legend.key.height=unit(2,"line")) + ggtitle('Final Test Accuracy') IVplot
aov.1 <- aov(final_score~(half*practice*other_type) + Error(subject/(half*practice*other_type)), data=IVxSS) pander(summary(aov.1),style = 'simple',justify='left',table.split.table=Inf)
IV_half_prac <- IVsummary(SCKT_allSs, grouping.vars =c("half","practice"), fn=c("mean")) # select(-prac_score_sd,sd=final_score_sd) %>% # mutate(CI_range = sd/(sqrt(n)*qt(.975,n-1))) half_prac_plot <- IVplot %+% IV_half_prac + aes(x=practice,y=final_score, fill= NULL) half_prac_plot
aov2.data <- SCKT_allSs %>% filter(repeating=='N') %>% group_by(subject,half, practice, other_type) %>% summarise(final_score = mean(final_score)) aov.2 <- aov(final_score~(half*practice)+Error(subject/(half*practice)), data=aov2.data) pander(summary(aov.1),justify='left',table.split.table=Inf)
# SCKT_allSs$prac_score <- factor(SCKT_allSs$prac_score) # selected only tested cue/targets pairs condData <- SCKT_condSummary(SCKT_allSs) condPlot <- ggplot(mutate(condData$group, prac_score = replace(prac_score,is.na(prac_score),-1)) %>% recode_other_type(), aes(x=practice,y=final_acc,fill=factor(prac_score))) + geom_bar(position='dodge',stat="identity",drop=F) + facet_grid(other_type~half, labeller = labeller(half=label_both, other_type = c('Tneg'='Tested: Incorrect', 'Tplus'='Tested: Correct', "S"="Studied", "C" = "No Practice"))) + scale_fill_manual("Practice Test", labels=c("Not Tested", "Incorrect" ,"Correct"), values = wes_palette("FantasticFox")) + ylab("Final Test Accuracy") condPlot
jointData <- SCKT_jointSummary(SCKT_allSs)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.