View source: R/tar_group_count.R
tar_group_count | R Documentation |
Create a target that outputs a grouped data frame
for downstream dynamic branching. Set the maximum
number of groups using count
. The number of rows per group
varies but is approximately uniform.
tar_group_count(
name,
command,
count,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")
)
name |
Symbol, name of the target.
In A target name must be a valid name for a symbol in R, and it
must not start with a dot. Subsequent targets
can refer to this name symbolically to induce a dependency relationship:
e.g. In most cases, The target name is the name of its local data file in storage. Some file systems are not case sensitive, which means converting a name to a different case may overwrite a different target. Please ensure all target names have unique names when converted to lower case. In addition, a target's
name determines its random number generator seed. In this way,
each target runs with a reproducible seed so someone else
running the same pipeline should get the same results,
and no two targets in the same pipeline share the same seed.
(Even dynamic branches have different names and thus different seeds.)
You can recover the seed of a completed target
with |
command |
R code to run the target.
In |
count |
Positive integer, maximum number of row groups |
tidy_eval |
Logical, whether to enable tidy evaluation
when interpreting |
packages |
Character vector of packages to load right before
the target runs or the output data is reloaded for
downstream targets. Use |
library |
Character vector of library paths to try
when loading |
format |
Optional storage format for the target's return value.
With the exception of |
repository |
Character of length 1, remote repository for target storage. Choices:
Note: if |
error |
Character of length 1, what to do if the target stops and throws an error. Options:
|
memory |
Character of length 1, memory strategy. Possible values:
For cloud-based dynamic files
(e.g. |
garbage_collection |
Logical: |
deployment |
Character of length 1. If |
priority |
Numeric of length 1 between 0 and 1. Controls which
targets get deployed first when multiple competing targets are ready
simultaneously. Targets with priorities closer to 1 get dispatched earlier
(and polled earlier in |
resources |
Object returned by |
storage |
Character string to control when the output of the target
is saved to storage. Only relevant when using
|
retrieval |
Character string to control when the current target
loads its dependencies into memory before running.
(Here, a "dependency" is another target upstream that the current one
depends on.) Only relevant when using
|
cue |
An optional object from |
description |
Character of length 1, a custom free-form human-readable
text description of the target. Descriptions appear as target labels
in functions like |
A target object to generate a grouped data frame to allows downstream dynamic targets to branch over the groups of rows. See the "Target objects" section for background.
Most tarchetypes
functions are target factories,
which means they return target objects
or lists of target objects.
Target objects represent skippable steps of the analysis pipeline
as described at https://books.ropensci.org/targets/.
Please read the walkthrough at
https://books.ropensci.org/targets/walkthrough.html
to understand the role of target objects in analysis pipelines.
For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories explains target factories (functions like this one which generate targets) and the design specification at https://books.ropensci.org/targets-design/ details the structure and composition of target objects.
Other Grouped data frame targets:
tar_group_by()
,
tar_group_select()
,
tar_group_size()
if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({
produce_data <- function() {
expand.grid(var1 = c("a", "b"), var2 = c("c", "d"), rep = c(1, 2, 3))
}
list(
tarchetypes::tar_group_count(data, produce_data(), count = 2),
tar_target(group, data, pattern = map(data))
)
})
targets::tar_make()
# Read the first row group:
targets::tar_read(group, branches = 1)
# Read the second row group:
targets::tar_read(group, branches = 2)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.