sqm:

Description Usage Arguments Details Value Author(s) References Examples

Description

Estimating Copula based Stochastic Frontier Quantile Model

Usage

1
sfa(Y=Y,X=X,family=1,tau=0.5,RHO=0.5,LB=-0.99,UB=0.99)

Arguments

Y

vector of dependent variable

X

matrix of independent variable

family

Copula function eg. Gaussain=1, Student-t=2 (see, Vinecopula package)

tau

The qauntile level range between 0-1

RHO

The initail value of the copula parameter

LB

The lower bound of the copula parameter

UB

The upper bound of the copula parameter

Details

The Copula based Stochastic Frontier model of (Pipitpojanakarnet al.(2016) is the new class the technical efficiency measure. Methodologically, the model concern about dependency between two-sided error term and one-sided inefficiency. This model becomes more flexible to the outlier and it can measure the relationship between output and input levels across efficiency quantiles. In addition, this model also provides the different slopes of parameters describing the production of Asian countries rather than average value.

Value

result

The result contain the estimated parameters, standard errors, t-stat, and p-value

AIC

Akaiki Information Criteria

BIC

Bayesian Information Criteria

Loglikelihood

Maximum Log-likelihood function

Author(s)

Woraphon Yamaka

References

Pipitpojanakarn, V., Maneejuk, P., Yamaka, W., & Sriboonchitta, S. (2016, November). Analysis of agricultural production in Asia and measurement of technical efficiency using copula-based stochastic frontier quantile model. In International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (pp. 701-714). Springer, Cham.

Pipitpojanakarn, V., Yamaka, W., Sriboonchitta, S., & Maneejuk, P. (2017). Frontier Quantile Model Using a Generalized Class of Skewed Distributions. Advanced Science Letters, 23(11), 10737-10742.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
library(truncnorm)
library(mvtnorm)
library("VineCopula")
library("frontier")
library(ald)

# example included in FRONTIER 4.1 (cross-section data)
data(front41Data)
attach(front41Data)
# Cobb-Douglas production frontier
cobbDouglas <- sfa( log(output)~log(capital)+log(labour),data=front41Data)
summary(cobbDouglas)


# Select familty  copula upper and lower bouubd ( look at Vinecopula package)
# family=1   # 1 is Gaussian, 2 is Student-t, 3 is Clayton and so on....

#Gaussian (-.99, .99)
#Student t (-.99, .99)
#Clayton (0.1, Inf)
Y=log(output)
X=cbind(log(capital),log(labour))
model=copSQM(Y=Y,X=X,family=1,tau=0.5,RHO=0.5,LB=-0.99,UB=0.99)

woraphonyamaka/CopSQM documentation built on June 12, 2020, 5:20 a.m.