OptimNNet | R Documentation |
A class for the optimization methods to use ´nnet::nnet()´.
No return.
fmmr6::AbstractMethod
-> fmmr6::OptimMethod
-> OptimNNet
fit()
Run the optimization for the model.
OptimNNet$fit( data_model, theta, ll, gr, hidden, pi_vector, npar, latent, family )
data_model
(DataModel()
)
The DataModel object contains data used in the fmmr6.
theta
(numeric()
)
The coefficients to estimates.
ll
(function()
)
The loglikelihood function.
gr
(function()
)
The gradient function.
hidden
(matrix()
)
The matrix of the posterior probability.
pi_vector
(numeric()
)
A vector of the prior probability pi
.
npar
(integer()
)
Number of the parameters.
latent
(integer(1)
)
The number of latent classes
family
(character(1)|character()
)
The distribution family which can be either a string like "gaussian"
or a vector like c("gaussian", "gaussian")
.
Return the optimization result with the estimates, the Loglikelihood value and the information criteria.
clone()
The objects of this class are cloneable with this method.
OptimNNet$clone(deep = FALSE)
deep
Whether to make a deep clone.
Dongjie Wu
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.