fpia: Optimal Univariate Allocation Under Constraints for...

View source: R/algorithms_of_other_authors.R

fpiaR Documentation

Optimal Univariate Allocation Under Constraints for Stratified Sampling

Description

[Experimental]

Algorithm for optimal allocation in stratified sampling with lower and upper constraints based on fixed point iteration.

Usage

fpia(
  n,
  Ah,
  mh = NULL,
  Mh = NULL,
  lambda0 = NULL,
  maxiter = 100,
  tol = .Machine$double.eps * 1000
)

fpia2(v0, Nh, Sh, mh = NULL, Mh = NULL, lambda0 = NULL, maxiter = 100)

Arguments

n
  • target sample size for allocation.

Ah
  • population strata sizes * standard deviations of a given variable in strata.

mh
  • lower constraints for sample sizes in strata.

Mh
  • upper constraints for sample sizes in strata.

lambda0
  • initial parameter 'lambda' (optional).

maxiter
  • maximal number of iterations for algorithm.

tol
  • the desired accuracy (convergence tolerance).

v0
  • upper limit for value of variance which must be attained for computed optimal allocation.

Nh
  • population strata sizes.

Sh
  • standard deviations of a given variable in strata.

Value

A vector of optimal allocation sizes, and number of iterations.

Functions

  • fpia2():

References

Münnich, R. T., Sachs, E.W. and Wagner, M. (2012) Numerical solution of optimal allocation problems in stratified sampling under box constraints, AStA Advances in Statistical Analysis, 96(3), pp. 435-450. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10182-011-0176-z")}


wwojciech/stratallo documentation built on Dec. 24, 2024, 10:43 p.m.