singlecell_processor: call BISCUIT

Description Usage Arguments

View source: R/BISCUIT_main.R

Description

run single cell data pre-processing via BISCUIT algorithm.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
singlecell_processor(
  input_file_name = stop("missing the raw data table file!"),
  input_data_tab_delimited = TRUE,
  is_format_genes_cells = TRUE,
  choose_cells = 3000,
  choose_genes = 150,
  gene_batch = 50,
  num_iter = 20,
  num_cores = detectCores() - 4,
  z_true_labels_avl = TRUE,
  num_cells_batch = 1000,
  alpha = 1,
  output_folder_name = "./output"
)

Arguments

input_data_tab_delimited

set to TRUE if the input data is tab-delimited

is_format_genes_cells

set to TRUE if input data has rows as genes and columns as cells

choose_cells

comment if you want all the cells to be considered

choose_genes

comment if you want all the genes to be considered

gene_batch

number of genes per batch, therefore num_batches = choose_genes (or numgenes)/gene_batch. Max value is 150

num_iter

number of iterations, choose based on data size.

num_cores

number of cores for parallel processing. Ensure that detectCores() > 1 for parallel processing to work, else set num_cores to 1.

z_true_labels_avl

set this to TRUE if the true labels of cells are available, else set it to FALSE. If TRUE, ensure to populate 'z_true' with the true labels in 'BISCUIT_process_data.R'

num_cells_batch

set this to 1000 if input number of cells is in the 1000s, else set it to 100.

alpha

DPMM dispersion parameter. A higher value spins more clusters whereas a lower value spins lesser clusters.

output_folder_name

give a name for your output folder.


xieguigang/biscuit documentation built on Dec. 23, 2021, 6:19 p.m.