run single cell data pre-processing via BISCUIT
algorithm.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | singlecell_processor(
input_file_name = stop("missing the raw data table file!"),
input_data_tab_delimited = TRUE,
is_format_genes_cells = TRUE,
choose_cells = 3000,
choose_genes = 150,
gene_batch = 50,
num_iter = 20,
num_cores = detectCores() - 4,
z_true_labels_avl = TRUE,
num_cells_batch = 1000,
alpha = 1,
output_folder_name = "./output"
)
|
input_data_tab_delimited |
set to TRUE if the input data is tab-delimited |
is_format_genes_cells |
set to TRUE if input data has rows as genes and columns as cells |
choose_cells |
comment if you want all the cells to be considered |
choose_genes |
comment if you want all the genes to be considered |
gene_batch |
number of genes per batch, therefore num_batches = choose_genes (or numgenes)/gene_batch. Max value is 150 |
num_iter |
number of iterations, choose based on data size. |
num_cores |
number of cores for parallel processing. Ensure that detectCores() > 1 for parallel processing to work, else set num_cores to 1. |
z_true_labels_avl |
set this to TRUE if the true labels of cells are available, else set it to FALSE. If TRUE, ensure to populate 'z_true' with the true labels in 'BISCUIT_process_data.R' |
num_cells_batch |
set this to 1000 if input number of cells is in the 1000s, else set it to 100. |
alpha |
DPMM dispersion parameter. A higher value spins more clusters whereas a lower value spins lesser clusters. |
output_folder_name |
give a name for your output folder. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.