fsmry.graph: Summarize y by x graphically

View source: R/fsmry.graph.R

fsmry.graphR Documentation

Summarize y by x graphically

Description

Summarize y by x graphically

Usage

fsmry.graph(y, x, type = c("scatter", "bxp", "errbar", "bar", "bar2"),
  y.plab = "", x.plab = "", ynames = NULL, xnames = NULL,
  stat.txt = NULL, loc.stat = NULL, ylim = NULL, fname = NULL,
  y.fnlab = NULL, x.fnlab = NULL, subgrp = "", withline = T,
  geomean = F, silent = T, width = 3, height = 3, mar = NULL,
  mgp = NULL, cex.bar = NULL, cex = 1, ...)

Arguments

y

A continuous variable.

x

A continuous or categorical variable.

type

a text string for the type of graph, e.g., "scatter","bxp","errbar","bar",or "bar2"

y.plab

y-axis label

x.plab

x-axis label

ynames

names for different categories of y

xnames

names for different categories of x

stat.txt

statistics to show on the graph, typically, p-value and/or correlation coefficient

loc.stat

location of the stat.txt

ylim

specify the y-axis limit if needed

fname

a text string of file name if a win-meta file is to be generated

y.fnlab

a text string of y variable name to be included in a file name

x.fnlab

a text string of x variable name to be included in a file name

subgrp

a text string of analysis cohort name to be included in a file name

withline

a logic indicator of whether to include the Tukey line in the scatter plot, default true

geomean

a logic indicator of whether to plot geometric mean/sd when plotting the errbar plot, default false

silent

a logic indicator of whether to output the mp variable generated by barplot function, default true

width

width of the graph is a win-meta file is to be generated

height

height of the graph is a win-meta file is to be generated

mar

graphical parameter

mgp

graphical parameter

cex.bar

graphical parameter for specifying text size of text above each bar

cex

graphical parameter

...

additional graphical paramter

Value

Summary graph of y by x.

Examples

set.seed(16)
dat.work <- data.frame(ht = c(rnorm(10, mean=1.72, sd=0.1), rnorm(10, mean=1.65, sd=0.1)),
                       wt = c(rnorm(10, mean=70, sd=10), rnorm(10, mean=60, sd=10)),
                       sex = factor(rep(c("Female", "Male", "Female", "Male"), c(2,8,6,4))),
                       group = factor(rep(c("grp1", "grp2"), each=10)))
cor.test(dat.work$wt, x = dat.work$ht)
fsmry.graph(y = dat.work$wt, x = dat.work$ht, type ="scatter",
            y.plab = "Weight",
            x.plab = "Height",
            stat.txt = "r=-0.24, p=0.31")
fsmry.by.grp(y = dat.work$ht, grp = dat.work$sex)
fsmry.graph(y = dat.work$ht, x = dat.work$sex, type ="bxp",
            y.plab = "Weight",
            x.plab = "Sex",
            stat.txt = "p=0.68")
fsmry.graph(y = dat.work$ht, x = dat.work$sex, type ="errbar",
            y.plab = "Weight",
            x.plab = "Sex",
            stat.txt = "p=0.66")
fsmry.graph(y = dat.work$ht, x = dat.work$sex, type ="errbar",
            y.plab = "Weight",
            stat.txt = "p=0.68",
            geomean=T)
fsmry2.by.grp(y = dat.work$sex, grp=dat.work$group, cmp.method="fisher")
fsmry.graph(y = dat.work$sex, x = dat.work$group, type ="bar",
            stat.txt = "p=0.17")
fsmry.graph(y = dat.work$sex, x = dat.work$group, type ="bar",
            xnames=c("Group1", "Group2"),
            stat.txt = "p=0.17")
fsmry.graph(y = dat.work$sex, x = dat.work$group, type ="bar2",
            xnames=c("Group1", "Group2"),
            stat.txt = "p=0.17")

xkzhou/BTKR documentation built on Feb. 1, 2023, 1:14 a.m.