| lm_eps | R Documentation | 
This function solves the Maximum Likelihood Estimate of the low-dimensional linear model for extreme phenotype sampling data using Newton-Raphson (NR) procedure. This function is prepared based on functions from the R package CEPSKAT.
lm_eps(formula, c1, c2, delta = 0.001, MAXITERNUM = 1000, data = NULL, verbose = FALSE)
formula | 
 Regression model to be fit. Required.  | 
c1 | 
 Right censored point. Required.  | 
c2 | 
 Left censored point. Required.  | 
delta | 
 Convergence threshold for NR procedure. Default is 0.001.  | 
MAXITERNUM | 
 Maximum iteration number for NR procedure. Default is 1000.  | 
data | 
 The dataframe stores data for the formula. Default is NULL.  | 
verbose | 
 Print debugging info or not. Default is FALSE.  | 
n=100 p1=0.2 p2=0.2 X=rnorm(n) Y=1+0.5*X+rnorm(n) Y_eps=Y[order(Y)[c(1:(n*p1),(n-n*p2+1):n)]] X_eps=X[order(Y)[c(1:(n*p1),(n-n*p2+1):n)]] c1=Y_eps[n*p1+1] c2=Y_eps[n*p1] res=lm_eps(Y_eps~X_eps, c1, c2) res
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.