library(knitr) library(rmarkdown) options(max.print="90") opts_chunk$set(echo =TRUE, eval=TRUE, cache=!TRUE, prompt=FALSE, tidy=FALSE, comment=NA, message=FALSE, warning=FALSE, results= 'markup', fig.margin=TRUE, fig.height=5, fig.width=8 )
\newpage
We'd like to demonstrate how marine litter analyses are conducted. In the analysis, ---expl
If the follwing pacakges have not been installed, please execute next commented lines first.
#install.packages("devtools") #install.packages("dplyr") library(devtools) library(dplyr) #install_github("y-yasutomo/malia") #calling package in order to analyze marine debris data library(malia)
Create data for malia package
Reading 'raw' data (at first time)
Sighting data
#Designate data name #Data.name<-"おしょろ丸目視まとめC056" #Rev.name<-"O18y1" #Sight.hand(Data.name,Rev.name)
Effort data
#Designate data name #Data.name<-"レグ番号順 おしょろC056" #Rev.name<-"O18y1" #Effort.hand(Data.name,Rev.name)
Survey track line
#Designate voyage name Vname<-"O18y1" survey.plot(read.csv(paste(Vname,".effort.csv",sep="")))
Simple estimation using MALIA function Reading data
Sight.Data<-read.csv(paste(Vname,".debris.csv",sep="")) Effort.Data<-read.csv(paste(Vname,".effort.csv",sep=""))
We shall estimate density of 'EPS' by 'MALIA' function
tmp.Data<-Sight.Data %>%filter(type == "EPS") res<-MALIA(tmp.Data,Effort.Data,key="hn",td=200)
Densities in each leg
leg.D.plot(res$leg.D.obs$leg.result,xl=c(120,160),yl=c(20,50),save=F,Type="EPS")
SDAM function can conduct whole analysis i.e) estimate detection function, calculate densities in each debris type, covariate and detection function As it takes some time to finish all trials, we use already created results for mapping, model selection and making table.
#res<-SDAM(Voyage.name=Vname,COVARIATE = c("conv", "occo","weather", "size"), key.list = c("hn","hr", "hhn", "hhr"),td=200,cp=10) #Reading result object res<-readRDS(paste(Vname,".result.obj",sep=""))
Maps with trackline and estimated density
#let's see type 'EPS' leg.D.res<-res$hhr$weather$EPS$leg.D.obs$leg.result leg.D.plot(leg.D.res,save=F,Type='EPS')
Density of "EPS" by grid
grid.D.res<-res$hhr$weather$EPS$grid.D.res grid.D.plot(grid.D.res,save=F,Type='EPS')
model summary
aic.mat<-aic.summary(res) aic.mat$EPS
model.extract function can extract best models in each debris type easily from SDAM result
best.model<-model.extract(aic.mat,res) best.model$best.mat
Summary of densities by leg
leg.table<-leg.D.table(best.model$best.list) head(leg.table) #write.xlsx(leg.table,file=paste(table.pass,"leg.D.table.xlsx",sep=""),row.names=F)
Summary of densities by grid
grid.table<-grid.D.table(best.model$best.list) head(grid.table) #write.xlsx(grid.table,file=paste(table.pass,"grid.D.table.xlsx",sep=""),row.names=F)
Summary of densities by area
area.table<-area.D.table(best.model$best.list) head(area.table) #write.xlsx(area.table,file=paste(table.pass,"area.D.table.xlsx",sep=""),row.names=F)
ls. function can sum up artificial and natural products
Ar<-c("FGN","FGF","FGO","EPS","PBA","PBO","FP","PC","G","M","W","UO") Nt<-c("SW","DW","NO") An.table<-ls.(leg.table,Voyage.name,Ar,Nt) head(An.table)
Plot of Artificial product
Artificial.leg<-An.table %>% select(Leg.No.,Leg.Length,Lat.Start,Lon.Start,Lat.End,Lon.End,Artificial_Density) %>% rename(Density=Artificial_Density) leg.D.plot(Artificial.leg,save=F) Artificial.grid<-grid.D(Artificial.leg) grid.D.plot(Artificial.grid,save = F)
Plot of Natural product
Natural.leg<-An.table %>% select(Leg.No.,Leg.Length,Lat.Start,Lon.Start,Lat.End,Lon.End,Natural_Density) %>% rename(Density=Natural_Density) leg.D.plot(Natural.leg,save=F) Natural.grid<-grid.D(Natural.leg) grid.D.plot(Natural.grid,save = F)
Combining results across multiple surveys. In this procedure, it is necessary result objects has to already be created. Survey legs
vname<-c("S18y4","O18y1","K18y1") tmp<-data.frame() for(i in 1:length(vname)){ Effort.Data<-read.csv(paste(vname[i],".effort.csv",sep="")) Effort.Data$voyage_name<-vname[i] tmp<-rbind(tmp,Effort.Data) } survey.plot(tmp,multi=T)
Combine leg D results In the leg.D.comb function, model selection and extraction of the best model are conducted.
tmp<-leg.D.comb(vname) #let's see type "DW" tmp2<-grid.D(tmp$DW) grid.D.plot(tmp2,save = F) #area D tmp3<-area.D(tmp$DW) tmp3$area.density
Artificial and Natural products Artificial product
tmp<-vanc(vname) leg.D.plot(tmp$Ar.leg.D,save=F) Artificial.grid<-grid.D(tmp$Ar.leg.D) grid.D.plot(Artificial.grid,save = F)
Natural product
leg.D.plot(tmp$Nt.leg.D,save=F) Natural.grid<-grid.D(tmp$Nt.leg.D) grid.D.plot(Natural.grid,save = F)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.