Description Usage Arguments Value See Also Examples
The function does K-fold cross validaton (CV) to choose an optimal pair of (lambda, alpha)
on which the model performs best according to the chosen error metric: mean squared error
or mean absolute error.
1 2  | rarefit.cv(fitObj, y, X, errtype = "mean-squared-error", nfolds = 5,
  ...)
 | 
fitObj | 
 Output of   | 
y | 
 Response variable.  | 
X | 
 
  | 
errtype | 
 Type of error metric used in cross validation. Available choices are mean-squared-error (default) and mean-absolute-error.  | 
nfolds | 
 Number of folds (default is 5)  | 
... | 
 Other arguments that can be passed to   | 
folds | 
 A length-  | 
errs | 
 A   | 
m | 
 A   | 
se | 
 A   | 
ibest | 
 Indices of pair of (  | 
lambda.best | 
 Value of   | 
alpha.best | 
 Value of   | 
1 2 3 4 5 6 7 8 9 10 11 12  | ## Not run: 
# See vignette for more details.
set.seed(100)
ts <- sample(1:length(data.rating), 400) # Train set indices
# Fit the model on train set
ourfit <- rarefit(y = data.rating[ts], X = data.dtm[ts, ], hc = data.hc, lam.min.ratio = 1e-6,
                  nlam = 20, nalpha = 10, rho = 0.01, eps1 = 1e-5, eps2 = 1e-5, maxite = 1e4)
# Cross validation
ourfit.cv <- rarefit.cv(ourfit, y = data.rating[ts], X = data.dtm[ts, ],
                        rho = 0.01, eps1 = 1e-5, eps2 = 1e-5, maxite = 1e4)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.