pmdhvp: Interaction Term Ranking with PMD criteria

Description Usage Arguments Value Author(s) References Examples

View source: R/HIH.R

Description

This function ranks the interaction terms in a rfsrc object according to pairwise minimal depth (PMD) matrix.

Usage

1
pmdhvp(obj, inter, verbose = T)

Arguments

obj

An object of class (rfsrc, grow).

inter

A list of vectors that store combinations in interaction terms.

verbose

Set to TRUE for verbose output.

Value

pmdvp

PMD variable importance for each interaction terms in inter.

pmd

PMD matrix calculated from input obj.

Author(s)

Yifan Sha and Min Lu

References

Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist., 1:519-537.

Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-dimensional data. Statist. Anal. Data Mining, 4:115-132.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
data(express)
o.0 <- rfsrc(y~., data = express[,1:11])
## computing combinations up to 5 way interaction terms
cmbn <- lapply(2:5,function(i){t(combn(1:length(o.0$xvar.names),i))})
inter <- unlist(lapply(1:length(cmbn), function(i){
     lapply(1:nrow(cmbn[[i]]),function(j){
     matrix(cmbn[[i]][j,],1,length(cmbn[[i]][j,])) })
                      }), recursive = FALSE )

o <- pmdhvp(obj = o.0, inter, verbose = TRUE)
o$pmdvp
## rank(o$pmdvp)[which(rownames(o$pmdvp) == "x1578_x1430_x692_x1223")]

yifansha/highinthunt documentation built on July 2, 2020, 6:29 p.m.