Description Usage Arguments Value Author(s) References Examples
This function ranks the interaction terms in a rfsrc object according to pairwise minimal depth (PMD) matrix.
1 | pmdhvp(obj, inter, verbose = T)
|
obj |
An object of class (rfsrc, grow). |
inter |
A list of vectors that store combinations in interaction terms. |
verbose |
Set to TRUE for verbose output. |
pmdvp |
PMD variable importance for each interaction terms in inter. |
pmd |
PMD matrix calculated from input obj. |
Yifan Sha and Min Lu
Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist., 1:519-537.
Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.
Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-dimensional data. Statist. Anal. Data Mining, 4:115-132.
1 2 3 4 5 6 7 8 9 10 11 12 | data(express)
o.0 <- rfsrc(y~., data = express[,1:11])
## computing combinations up to 5 way interaction terms
cmbn <- lapply(2:5,function(i){t(combn(1:length(o.0$xvar.names),i))})
inter <- unlist(lapply(1:length(cmbn), function(i){
lapply(1:nrow(cmbn[[i]]),function(j){
matrix(cmbn[[i]][j,],1,length(cmbn[[i]][j,])) })
}), recursive = FALSE )
o <- pmdhvp(obj = o.0, inter, verbose = TRUE)
o$pmdvp
## rank(o$pmdvp)[which(rownames(o$pmdvp) == "x1578_x1430_x692_x1223")]
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.