cond.inf | R Documentation |
Conditional inference for lm and glm models
cond.inf( object, cond.data = NULL, param = NULL, alg = "loess", random.seed = NULL, other.params = NULL, folds = NULL, verbose = TRUE )
object |
An lm() or glm() object |
cond.data |
Optional, a dataframe for the conditioning set; set as all covariates in the lm() or glm() object formula if not provided |
param |
Optional, a vector of coefficients to conduct conditional inference; fit all coefficients if not provided; can be a mixture of string name and index |
alg |
Optinal, a string for name of algorithm, current options are 'loess' and 'grf' |
random.seed |
Optional, random seed for sample splitting |
other.params |
Optional, other parameters for the regression algorithm; can include span and degree for loess |
folds |
Optional, a list of two folds of indices for sample splitting; can be useful to control sample splitting |
verbose |
Optional, whether or not to print summary of inference; TRUE by default |
Standard error for conditional parameter, super-population parameter, fitted empirical parameter, confidence interval for conditional parameter
X = matrix(rnorm(1000*10), nrow=1000) Y = X %*% matrix(c(1,2,3,rep(0,10-3)), ncol=1) + rnorm(1000) * 0.1 Z = data.frame(X[,1:2]) lm.mdl = lm(Y~., data = data.frame(X)) cond.inf(lm.mdl, Z, c("X2",2)) X = matrix(rnorm(1000*10), nrow=1000) logit.x = X %*% matrix(c(1,2,3,rep(0,10-3)), ncol=1) + X[,1]**2 + rnorm(1000) * 0.1 Y = rbinom(n, 1, exp(logit.x)/(1+exp(logit.x))) Z = data.frame(X[,1:2]) glm.mdl = glm(Y~., data = data.frame(X), family='binomial') cond.inf(glm.mdl, cond.data=Z) cond.inf(glm.mdl, cond.data=Z, c(1, "X1", "X2"), alg='grf')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.