A package that builds on the bcaboot package to compute bias corrected and accelerated bootstrap confidence limits . By implementing parallel computing using the furrr package, we are able to make substantial speed improvements.
For further information the bca bootstrapping method, refer to
Computer Age Satistical Inference found here
Or the manual for bcaboot
To install, use devtools::install_github("yixinsun1216/uggs")
``` library(lfe) library(uggs)
## create covariates x1 <- rnorm(1000) x2 <- rnorm(length(x1))
## fixed effects fe <- factor(sample(20, length(x1), replace=TRUE))
## effects for fe fe_effs <- rnorm(nlevels(fe))
## creating left hand side y u <- rnorm(length(x1)) y <- 2 * x1 + x2 + fe_effs[fe] + u
# create dataframe to pass into uggs df_test <- as.data.frame(cbind(y, x1, x2, fe))
# function that returns parameter of interest, x1 est_test <- function(df){ m <- felm(y ~ x1 + x2 | fe, df) as.numeric(coef(m)["x1"]) }
x1_boot <- uggs(df_test, 1000, est_test, jcount = 40, jreps = 5)
x1_boot
$limits
bca std pct jacksd
0.025 1.977667 1.975631 0.029 0.004010308
0.05 1.987274 1.985915 0.054 0.001749787
0.1 1.996758 1.99777 0.102 0.004436592
0.5 2.038755 2.039592 0.486 0.001477231
0.9 2.08201 2.081414 0.902 0.002506374
0.95 2.096626 2.09327 0.954 0.004449781
0.975 2.106012 2.103553 0.979 0.001599195
$stats
theta sdboot z0 a sdjack
est 2.039592 0.0326336866 -0.01754730 0.02673691 0.0315359
jsd 0.000000 0.0007583239 0.03020335 0.00000000 0.0000000
$B.mean [1] 1000.000000 2.039816
$ustats ustat sdu 2.0393682 0.1367483 ```
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.