Description Usage Arguments Value Examples
Solve for local minimum with one dimensional golden section on a L1 lmmen penalty.
| 1 2 3 | golden_section(dat, init.beta, pen.effect = "FE.L1", opt.lb = 0,
  opt.ub = 1, opt.maxiter = 100, opt.tol = 0.1, opt.tau = (sqrt(5) -
  1)/2)
 | 
| dat | matrix, matrix that includes y (response),X (population covariates), Z (random effects covariates (not incl random intercept)) | 
| init.beta | numeric, initial fixed effects estimates | 
| pen.effect | character,which penalty to search on c('FE.L1','RE.L1',FE.L2”,'RE.L2'), Default: 'FE.L1' | 
| opt.lb | numeric, start of search interval, Default: 0 | 
| opt.ub | numeric, end of search interval, Default: 1 | 
| opt.maxiter | numeric, maximum iterations to search, Default: 100 | 
| opt.tol | numeric, accuracy value, Default: 0.1 | 
| opt.tau | numeric, golden proportion coefficient (~0.618) Default: (sqrt(5) - 1)/2 | 
lmmen list object inluding lmmen fit object of min BIC solution and summary statistics from the grid searc
| 1 2 3 4 5 6 | ## Not run:  
 dat <- initialize_example(n.i = 5,n = 30,q=4,seed=1)
 init <- init.beta(dat,method='glmnet')
 golden_section(dat,init,pen.effect = 'FE.L1')
 
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.