z_fun: A function to calculate posterior clustering probabilities

View source: R/z_fun.R

z_funR Documentation

A function to calculate posterior clustering probabilities

Description

This function calculate z, a matrix with each row representing the probability of the observations come from the corresponding group.

Usage

z_fun(W, m, V, Vmat, mu, Sig, red_sig, pi_g, G, it)

Arguments

W

observation data: the count data, n*(K+1) matrix where K is the number of taxa.

m

variational parameter m, vector of n.

V

variational parameter V, list of n matrices, each element is a (K+1)*(K+1) matrix.

Vmat

internal parameter, a matrix of n rows as n being number of observations; each row is the diagonal element of the variational parameter V.

mu

mean parameter for the latent Gaussian variable, list of g vectors of (K+1).

Sig

variance parameter for the latent Gaussian variable, list of g (K+1)*(K+1) matrices.

red_sig

internal parameter, a list of G K*K dimensional matrices from the variance parameter.

pi_g

proportion vector of each component.

G

number of component.

it

number of iteration, keep track of iterations for condition checking

xi

variational parameter xi, vector of n.

Examples

z_fun()

yuanfang90/LNMVGA documentation built on Jan. 29, 2024, 8:24 a.m.