# BASIC INFO ---------------------------
##
## Script name: HyperparameterTuning.R
##
## Purpose of script: Model tuning
##
## Author: JijunYu
##
## Date Created: 2021-11-28
## Update Date:
##
## Copyright (c) Jijun Yu, 2021
## Email: jijunyuedu@outlook.com
##
## Notes:
## Different machine learning method have different tunning parameter
#--------------Main -----------------------
# Should write auto model
Tunning <- function(dataset = MLtestData,
target = "judge",
taskid = "MLtest",
learnmethod = "classif.rpart"){
require("mlr3verse")
require("FSelectorRcpp")
task = TaskClassif$new(id=taskid, backend=dataset, target = target)
learner = lrn(learnmethod)
search_space = ps(
cp = p_dbl(lower = 0.001, upper = 0.1),
minsplit = p_int(lower = 1, upper = 10))
hout = rsmp("holdout")
measure = msr("classif.ce")
evals20 = trm("evals", n_evals = 20)
instance = TuningInstanceSingleCrit$new(
task = task,
learner = learner,
resampling = hout,
measure = measure,
search_space = search_space, # different model need different search_space
terminator = evals20
)
tuner = tnr("grid_search", resolution = 5)
tuner$optimize(instance)
return(tuner)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.