Description Usage Arguments Value
A Negative Control Outcome Regression for Eliminating Unobserved Confounding in Time-series Studies
1 2 3 4 5 6 7 | ncor_summary(
data = data,
coef_y3_x = "coef1",
coef_y1_x = "coef2",
se = "se",
boot_no = 1000
)
|
data |
an optional data frame containing the variables in the model. |
coef_y3_x |
the coef of exposure on post-exposure outcome |
coef_y1_x |
the coef of exposure on pre-exposure outcome |
se |
the standard error of coef_y3_x |
boots_no |
the number of bootstrap for estimation |
causal
the casual effect estimation
lag
the lag causal effect estimation
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.