Description Usage Arguments Value Examples
View source: R/onlyDeconAlgorithms.R
Deconvolve cell types based on clusters detected by an n-pass spillover matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 |
sigMatrix |
The deconvolution matrix, e.g. LM22 or MGSM27 |
geneExpr |
The source gene expression matrix used to calculate sigMatrix |
toPred |
The gene expression to ultimately deconvolve |
hierarchData |
The results of hierarchicalSplit OR hierarchicalSplit.sc (DEFAULT: NULL, ie hierarchicalSplit) |
pdfDir |
A fold to write the pdf file to (DEFAULT: tempdir()) |
oneCore |
Set to TRUE to disable parallelization (DEFAULT: FALSE) |
nPasses |
The maximum number of iterations for spillToConvergence (DEFAULT: 100) |
remZinf |
Set to TRUE to remove any ratio with zero or infinity when generating gList (DEFAULT: FALSE) |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
useRF |
Set to TRUE to use ranger random forests to build the seed matrix (DEFAULT: TRUE) |
incNonCluster |
Set to TRUE to include a 'nonCluster' in each of the sub matrices (DEFAULT: TRUE) |
a matrix of cell counts
1 2 3 4 5 6 7 | #This toy example
library(ADAPTS)
fullLM22 <- ADAPTS::LM22[1:30, 1:4]
smallLM22 <- fullLM22[1:25,]
cellCounts <- hierarchicalClassify(sigMatrix=smallLM22, geneExpr=fullLM22, toPred=fullLM22,
oneCore=TRUE, nPasses=10, method='DCQ')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.