est.fGarchx | R Documentation |
est.fGarchx function estimates the Functional GARCH-X model by using the Quasi-Maximum Likelihood Estimation method.
est.fGarchx(fdata_y, fdata_x, basis)
fdata_y |
The functional data object with N paths for the objective data. |
fdata_x |
The functional data object with N paths for the covariate X. |
basis |
The M-dimensional basis functions. |
This function estimates the Functional GARCH-X model:
y_i(t)=\sigma_i(t)\varepsilon_i(t)
, for t \in [0,1]
and 1\leq i \leq N
,
\sigma_i^2(t)=\omega(t)+\int \alpha(t,s) y^2_{i-1}(s)ds+\int \beta(t,s) \sigma^2_{i-1}(s)ds + \int \theta(t,s) x^2_{i-1}(s)ds
,
where x_i(t)
is an exogenous variable.
List of model paramters:
d: d Parameter vector, for intercept function \delta
.
As: A Matrices, for \alpha
operators.
Bs: B Matrices, for \beta
operators.
Gs: G Matrices, for \gamma
operators.
Rice, G., Wirjanto, T., Zhao, Y. (2021) Exploring volatility of crude oil intra-day return curves: a functional GARCH-X model. MPRA Paper No. 109231. <https://mpra.ub.uni-muenchen.de/109231>. Cerovecki, C., Francq, C., Hormann, S., Zakoian, J. M. (2019). Functional GARCH models: The quasi-likelihood approach and its applications. Journal of Econometrics. 209(2), 353-375. <doi:10.1016/j.jeconom.2019.01.006>.
est.fArch
est.fGarch
diagnostic.fGarch
## Not run:
# generate discrete evaluations and smooth them into functional data objects.
yd = dgp.fgarch(grid_point=50, N=200, "arch")
yd = yd$garch_mat
xd = dgp.fgarch(grid_point=50, N=200, "garch")
xd = xd$garch_mat
fdy = fda::Data2fd(argvals=seq(0,1,len=50),y=yd,fda::create.bspline.basis(nbasis=32))
fdx = fda::Data2fd(argvals=seq(0,1,len=50),y=xd,fda::create.bspline.basis(nbasis=32))
# extract data-driven basis functions through the truncated FPCA method.
basis_est = basis.est(yd, M=2, "tfpca")$basis
# estimate an FGARCH-X model with basis when M=1.
garchx_est = est.fGarchx(fdy, fdx, basis_est[,1])
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.