#rewlr_fit <- function (y ,x, lambda, w0, w1, iter, tol) {
# B <- matrix(rep(0, ncol(x)))
# p <- c(); v <- c(); w <- c(); z <- c()
# dev <- 0
# dev1 <- 1
# cx <- 0
# n <- nrow(x)
# pq <- ncol(x)
# rnm <- colnames(x)
# result <- list()
# while(abs((dev - dev1) / dev1) > tol & cx <= iter) {
# dev <- dev1
# for(i in 1:n) {
# p[i] <- 1/(1 + exp(-x[i, ] %*% B))
# v[i] <- p[i] * (1 - p[i])
# w[i] <- w1 * y[i] + w0 * (1 - y[i])
# z_part <- (y[i] - p[i])/(p[i] * (1 - p[i]))
# z_part <- ifelse(is.nan(z_part), 0, ifelse(is.infinite(z_part) & z_part > 0, 99999,
# ifelse(is.infinite(z_part) & z_part < 0, -99999, z_part)))
# z[i] <- x[i, ] %*% B + z_part
# }
# D <- diag(c(w * p))
# Q <- x %*% solve(t(x) %*% D %*% x + lambda * diag(pq)) %*% t(x)
# Qii <- diag(Q)
#
# Xik <- c()
# for(k in 1:n){
# Xik[k] <- 1/2 * Qii[i] * ((1 + w1) * p[k] - w1)
# }
#
# #-----Rewl_algorithm 2----
# A = t(x) %*% D %*% x + lambda * diag(pq)
# b = t(x) %*% D %*% as.matrix(z)
#
#
# B <- cg_cpp(A, b, B)
#
# #-----Rewl_algorithm 3----
# A1 = t(x) %*% D %*% x + lambda * diag(pq)
# b1 = t(x) %*% (D %*% Xik)
#
# B_bias_x <- matrix(runif(pq))
# B_bias <- cg_cpp(A1, b1, B_bias_x)
#
# ll_temp <- c()
# for(j in 1:length(y)) {
# ll_temp_1 <- w[j] * log(exp(y[j] * c(x[j, ] %*% B)) /(1 + exp(c(x[j, ] %*% B))))
# ll_temp[j] <- ifelse(is.nan(ll_temp_1), 0, ifelse(is.infinite(ll_temp_1) & ll_temp_1 > 0, 99999,
# ifelse(is.infinite(ll_temp_1) & ll_temp_1 < 0, -99999, ll_temp_1)))
# }
#
# LogL <- sum(ll_temp) - lambda * (norm(B)^2) / 2
# dev1 <- - 2 * LogL
# cx <- cx + 1
#
# }
# ll_temp_null <- c()
# null_model <- log(mean(y) / (1 - mean(y)))
# for(j in 1:length(y)) {
# ll_temp_null[j] <- w[j] * log(exp(y[j] * null_model) /
# (1 + exp(null_model)))
# }
#
# LogLNULL <- sum(ll_temp_null) #- lambda * (norm(B)^2) / 2
# result$B <- B - B_bias
# rownames(result$B) <- rnm
# cov_B <- solve(-(-t(x) %*% D %*% x - lambda * diag(pq)))
# result$x <- x
# result$y <- y
# result$fitted <- 1 / (1 + exp(-x %*% result$B))
# result$std_error <- (sqrt(diag(cov_B)))
# result$wald <- result$B/result$std_error
# result$wald_all <- t(B) %*% cov_B %*% B
# # result$p <- 1 / (1 + exp(-x %*% result$B ))
# result$aic <- 2 * (pq - 1) - sum(ll_temp)
# result$null_dev <- 2 * (1 - LogLNULL)
# result$res_dev <- 2 * (1 - sum(ll_temp))
# result$df_null <- n - 1
# result$df_res <- n - (pq - 1)
# result$PseudoR2 <- 1 - (sum(ll_temp) / LogLNULL)
# result$auc <- as.numeric(roc(y, result$fitted)$auc)
# return(result)
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.