knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The goal of minP.lm is to test the null hypothesis of treatment equal to zero with minP test under the setting of the linear models.
You can install the released version of minP.lm from CRAN with:
library(devtools) install_github("zdz0610/minP.lm", force = TRUE) library(minP.lm)
This is a basic example which shows you how to solve a common problem:
library(minP.lm) ## basic example code n_sim=10000#number of simulations parallel_state=TRUE#whether to use the parallel function (Default is False) random_seed=123 #specify a random seed to reproduce the results (Default seed is 123) beta_0=0.5 #coefficient of the treatment beta_1=2 #coefficient of the covariate 1 beta_2=6 #cofficient of the covariate 2 mu=0 #the overall mean response sigma=1 #standard error of the error term na=40 #number of patients in the control nb=40 #number of patients in the treatment permuted=FALSE #whether use the permutation algorithm (Default is FALSE) #simulated data generation data1<-simulation_zhang(n_sim=n_sim,parallel_state=parallel_state, random_seed=random_seed,beta_0=beta_0,beta_1=beta_1, beta_2=beta_2,mu=mu,sigma=sigma,na=na,nb=nb, permuted=permuted) #summarize the data by power, Pearson correlation coefficient, and the #Proprotion of minP choosing model 1 # 0.0242 is found by the summarize_type1() under the null beta_0=0 summarize_power(data1,crit_val=0.0242,signi_level=0.05,permuted=F) summarize_corr(data1) summarize_proportion(data1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.