Description Usage Arguments Details Value Author(s) References See Also Examples
The function provides the selection of the regularization parameter lambda based on the GIC including AIC and BIC.
1 |
fit |
(ncpen object) fitted |
weight |
(numeric) the weight factor for various information criteria.
Default is BIC if |
verbose |
(logical) whether to plot the GIC curve. |
... |
other graphical parameters to |
User can supply various weight
values (see references). For example,
weight=2
,
weight=log(n)
,
weight=log(log(p))log(n)
,
weight=log(log(n))log(p)
,
corresponds to AIC, BIC (fixed dimensional model), modified BIC (diverging dimensional model) and GIC (high dimensional model).
The coefficients matrix
.
gic |
the GIC values. |
lambda |
the sequence of lambda values used to calculate GIC. |
opt.beta |
the optimal coefficients selected by GIC. |
opt.lambda |
the optimal lambda value. |
Dongshin Kim, Sunghoon Kwon, Sangin Lee
Wang, H., Li, R. and Tsai, C.L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika, 94(3), 553-568. Wang, H., Li, B. and Leng, C. (2009). Shrinkage tuning parameter selection with a diverging number of parameters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3), 671-683. Kim, Y., Kwon, S. and Choi, H. (2012). Consistent Model Selection Criteria on High Dimensions. Journal of Machine Learning Research, 13, 1037-1057. Fan, Y. and Tang, C.Y. (2013). Tuning parameter selection in high dimensional penalized likelihood. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(3), 531-552. Lee, S., Kwon, S. and Kim, Y. (2016). A modified local quadratic approximation algorithm for penalized optimization problems. Computational Statistics and Data Analysis, 94, 275-286.
1 2 3 4 5 6 7 8 9 10 | ### linear regression with scad penalty
sam = sam.gen.ncpen(n=200,p=20,q=5,cf.min=0.5,cf.max=1,corr=0.5)
x.mat = sam$x.mat; y.vec = sam$y.vec
fit = ncpen(y.vec=y.vec,x.mat=x.mat)
gic.ncpen(fit,pch="*",type="b")
### multinomial regression with classo penalty
sam = sam.gen.ncpen(n=200,p=20,q=5,k=3,cf.min=0.5,cf.max=1,corr=0.5,family="multinomial")
x.mat = sam$x.mat; y.vec = sam$y.vec
fit = ncpen(y.vec=y.vec,x.mat=x.mat,family="multinomial",penalty="classo")
gic.ncpen(fit,pch="*",type="b")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.