View source: R/data_gen_Rossler.R
data.gen.Rossler | R Documentation |
Generates a 3-dimensional time series using the Rossler equations.
data.gen.Rossler(
a = 0.2,
b = 0.2,
w = 5.7,
start = c(-2, -10, 0.2),
time = seq(0, 50, length.out = 5000)
)
a |
The a parameter. Default:0.2. |
b |
The b parameter. Default: 0.2. |
w |
The w parameter. Default: 5.7. |
start |
A 3-dimensional numeric vector indicating the starting point for the time series. Default: c(-2, -10, 0.2). |
time |
The temporal interval at which the system will be generated. Default: time=seq(0,50,length.out = 5000). |
The Rossler system is a system of ordinary differential equations defined as:
\dot{x} = -(y + z)
\dot{y} = x+a \cdot y
\dot{z} = b + z*(x-w)
The default selection for the system parameters (a = 0.2, b = 0.2, w = 5.7) is known to produce a deterministic chaotic time series.
A list with four vectors named time, x, y and z containing the time, the x-components, the y-components and the z-components of the Rossler system, respectively.
Some initial values may lead to an unstable system that will tend to infinity.
RÖSSLER, O. E. 1976. An equation for continuous chaos. Physics Letters A, 57, 397-398.
### synthetic example - Rossler
ts.r <- data.gen.Rossler(
a = 0.2, b = 0.2, w = 5.7, start = c(-2, -10, 0.2),
time = seq(0, 50, length.out = 1000)
)
# add noise
ts.r$x <- ts(ts.r$x + rnorm(length(ts.r$time), mean = 0, sd = 1))
ts.r$y <- ts(ts.r$y + rnorm(length(ts.r$time), mean = 0, sd = 1))
ts.r$z <- ts(ts.r$z + rnorm(length(ts.r$time), mean = 0, sd = 1))
ts.plot(ts.r$x, ts.r$y, ts.r$z, col = c("black", "red", "blue"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.