#' EDMeasure: A package for energy-based dependence measures
#'
#' The EDMeasure package provides measures of mutual dependence and tests of mutual independence,
#' independent component analysis methods based on mutual dependence measures,
#' and measures of conditional mean dependence and tests of conditional mean independence.
#'
#' The three main parts are:
#' \itemize{
#' \item mutual dependence measures via energy statistics
#' \itemize{
#' \item measuring mutual dependence
#' \item testing mutual independence
#' }
#' \item independent component analysis via mutual dependence measures
#' \itemize{
#' \item applying mutual dependence measures
#' \item initializing local optimization methods
#' }
#' \item conditional mean dependence measures via energy statistics
#' \itemize{
#' \item measuring conditional mean dependence
#' \item testing conditional mean independence
#' }
#' }
#'
#' @section Mutual Dependence Measures via Energy Statistics:
#' \strong{Measuring mutual dependence}
#'
#' The mutual dependence measures include:
#' \itemize{
#' \item asymmetric measure \eqn{\mathcal{R}_n} based on distance covariance \eqn{\mathcal{V}_n}
#' \item symmetric measure \eqn{\mathcal{S}_n} based on distance covariance \eqn{\mathcal{V}_n}
#' \item complete measure \eqn{\mathcal{Q}_n} based on complete V-statistics
#' \item simplified complete measure \eqn{\mathcal{Q}_n^\star} based on incomplete V-statistics
#' \item asymmetric measure \eqn{\mathcal{J}_n} based on complete measure \eqn{\mathcal{Q}_n}
#' \item simplified asymmetric measure \eqn{\mathcal{J}_n^\star} based on simplified complete measure
#' \eqn{\mathcal{Q}_n^\star}
#' \item symmetric measure \eqn{\mathcal{I}_n} based on complete measure \eqn{\mathcal{Q}_n}
#' \item simplified symmetric measure \eqn{\mathcal{I}_n^\star} based on simplified complete measure
#' \eqn{\mathcal{Q}_n^\star}
#' }
#'
#' \strong{Testing mutual independence}
#'
#' The mutual independence tests based on the mutual dependence measures are implemented as permutation
#' tests.
#'
#' @section Independent Component Analysis via Mutual Dependence Measures:
#' \strong{Applying mutual dependence measures}
#'
#' The mutual dependence measures include:
#' \itemize{
#' \item distance-based energy statistics
#' \itemize{
#' \item asymmetric measure \eqn{\mathcal{R}_n} based on distance covariance \eqn{\mathcal{V}_n}
#' \item symmetric measure \eqn{\mathcal{S}_n} based on distance covariance \eqn{\mathcal{V}_n}
#' \item simplified complete measure \eqn{\mathcal{Q}_n^\star} based on incomplete V-statistics
#' }
#' }
#' \itemize{
#' \item kernel-based maximum mean discrepancies
#' \itemize{
#' \item d-variable Hilbert--Schmidt independence criterion dHSIC\eqn{_n} based on
#' Hilbert--Schmidt independence criterion HSIC\eqn{_n}
#' }
#' }
#'
#' \strong{Initializing local optimization methods}
#'
#' The initialization methods include:
#' \itemize{
#' \item Latin hypercube sampling
#' \item Bayesian optimization
#' }
#'
#' @section Conditional Mean Dependence Measures via Energy Statistics:
#' \strong{Measuring conditional mean dependence}
#'
#' The conditional mean dependence measures include:
#' \itemize{
#' \item conditional mean dependence of \code{Y} given \code{X}
#' \itemize{
#' \item martingale difference divergence
#' \item martingale difference correlation
#' \item martingale difference divergence matrix
#' }
#' }
#' \itemize{
#' \item conditional mean dependence of \code{Y} given \code{X} adjusting for the dependence on \code{Z}
#' \itemize{
#' \item partial martingale difference divergence
#' \item partial martingale difference correlation
#' }
#' }
#'
#' \strong{Testing conditional mean independence}
#'
#' The conditional mean independence tests include:
#' \itemize{
#' \item conditional mean independence of \code{Y} given \code{X} conditioning on \code{Z}
#' \itemize{
#' \item martingale difference divergence under a linear assumption
#' \item partial martingale difference divergence
#' }
#' }
#' The conditional mean independence tests based on the conditional mean dependence measures are
#' implemented as permutation tests.
#'
#' @name EDMeasure-package
#'
#' @aliases EDMeasure
#'
#' @docType package
#'
#' @title Energy-Based Dependence Measures
#'
#' @author Ze Jin \email{zj58@cornell.edu},
#' Shun Yao \email{shunyao2@illinois.edu}, \cr
#' David S. Matteson \email{matteson@cornell.edu},
#' Xiaofeng Shao \email{xshao@illinois.edu}
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.