ccrm_est_2: GMM Estimator of distributional parameters of a K = 2 random...

View source: R/est_func_K2.R

ccrm_est_2R Documentation

GMM Estimator of distributional parameters of a K = 2 random coefficient model

Description

This function estimates the distribution of beta_i using GMM. The moment conditions are listed in Section 3 of Gao and Pesaran (2023)

Usage

ccrm_est_2(
  x,
  y,
  z = NULL,
  theta_init = NULL,
  s_max = 4,
  remove_intercept = TRUE,
  iter_gmm = TRUE,
  seed = 2023
)

Arguments

x

regressor (N-by-1)

y

dependent variable (N-by-p_x)

z

control variables (N-by-p_z)

theta_init

Initial estimates of distributional parameters

s_max

Maximum order of moments used in estimation

remove_intercept

whether subtract estimated intercept term in calculation of y_tilde

iter_gmm

Whether to use iterative GMM (If FALSE, use OW-GMM with initial estimates)

seed

seed for random number generator

Value

A list contains estimated coefficients and inferential statistics

theta_b

Estimated distributional parameter p, b_L, b_H

theta_b_se

s.e. of Estimated distributional parameter p, b_L, b_H

theta_m
theta_m_se

s.e. of estimated moments of beta_i

theta_m_gmm

Estimated moments of beta_i from gmm

theta_m_gmm_se

s.e. estimated moments of beta_i from gmm

gamma

estimated coefficients of control varibles, including intercept

gamma_se

s.e. estimated coefficients of control varibles, including intercept

V_theta

variance

gmm_res

GMM estimation of moments output object


zhan-gao/ccrm documentation built on Oct. 22, 2023, 3:24 p.m.