Description Usage Arguments Value
Determine number of groups using information criterion
1 2 3 | determine_K(N, TT, y, X, y_raw, X_raw, lambda_seq, K_max, rho = 2/3 * (N
* TT)^(-0.5), FUN = PLS.cvxr, beta0 = NULL, MaxIter = 500,
tol = 1e-04)
|
N |
individual dimension |
TT |
time dimension |
y |
y(TN * 1) |
X |
X(TN * P) |
y_raw |
y_raw(TN * 1) raw data without standardization |
X_raw |
X_raw(TN * P) raw data without standardization |
lambda_seq |
Candidate tuning variable |
K_max |
Maximum number of groups |
rho |
Tuning parameter in the IC |
FUN |
choose which function to be used in PLS estimation |
beta0 |
N*p matrix. initial estimator |
MaxIter |
Maximum # of iteration |
tol |
convergence criterion |
A list contains optimal K and lambda
lambda |
Optimal lambda |
K |
Optimal K |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.