determine_K: Determine number of groups using information criterion

Description Usage Arguments Value

View source: R/determine_K.R

Description

Determine number of groups using information criterion

Usage

1
2
3
determine_K(N, TT, y, X, y_raw, X_raw, lambda_seq, K_max, rho = 2/3 * (N
  * TT)^(-0.5), FUN = PLS.cvxr, beta0 = NULL, MaxIter = 500,
  tol = 1e-04)

Arguments

N

individual dimension

TT

time dimension

y

y(TN * 1)

X

X(TN * P)

y_raw

y_raw(TN * 1) raw data without standardization

X_raw

X_raw(TN * P) raw data without standardization

lambda_seq

Candidate tuning variable

K_max

Maximum number of groups

rho

Tuning parameter in the IC

FUN

choose which function to be used in PLS estimation

beta0

N*p matrix. initial estimator

MaxIter

Maximum # of iteration

tol

convergence criterion

Value

A list contains optimal K and lambda

lambda

Optimal lambda

K

Optimal K


zhan-gao/classo documentation built on April 24, 2020, 11:58 p.m.