example/2_Linear_Additive_Genetic_Model.md

2._Linear_Additive_Genetic_Model

Tianjing Zhao August 27, 2018

Step 1: Load Package

library("JWASr")

Please make sure you've already set up.

Step 2: Read data

phenotypes = phenotypes #build-in data

You can import your own data by read.table().

JWASr_path = find.package("JWASr")                            #find the local path of JWASr
JWASr_data_path = paste(JWASr_path,"/extdata/",sep= "")       #path for data
ped_path = paste(JWASr_data_path,"pedigree.txt",sep = "")     #path for pedigree.txt

You can also use your local data path to define ped_path.

pedigree = get_pedigree(ped_path, separator=',', header=TRUE) 

Univariate Linear Additive Genetic Model

Step 3: Build Model Equations

model_equation1 = "y1 = intercept + x1*x3 + x2 + x3 + ID + dam";
R = 1.0

model1 = build_model(model_equation1, R) 

Step 4: Set Factors or Covariate

set_covariate(model1, "x1")

Step 5: Set Random or Fixed Effects

G1 = 1.0
set_random(model1, "x2", G1) 
G2 = diag(2)
set_random_ped(model1, "ID dam", pedigree, G2)

Step 6: Run Bayesian Analysis

outputMCMCsamples(model1, "x2")
out = runMCMC(model1, phenotypes, chain_length = 5000, output_samples_frequency = 100)
out
## $`Posterior mean of polygenic effects covariance matrix`
##           [,1]      [,2]
## [1,] 3.3931469 0.3802194
## [2,] 0.3802194 1.6247857
## 
## $`Posterior mean of residual variance`
## [1] 1.778849
## 
## $`Posterior mean of location parameters`
##    Trait    Effect     Level     Estimate
## 1      1 intercept intercept    -30.19578
## 2      1     x1*x3    x1 * m   -0.9102935
## 3      1     x1*x3    x1 * f    0.6452522
## 4      1        x2         2  -0.01478697
## 5      1        x2         1 -0.001557767
## 6      1        x3         m     30.17486
## 7      1        x3         f     29.10591
## 8      1        ID        a2    0.1050424
## 9      1        ID        a1    0.3625167
## 10     1        ID        a3   -0.9619355
## 11     1        ID        a7    0.1805772
## 12     1        ID        a4    -1.284158
## 13     1        ID        a6   -0.9379141
## 14     1        ID        a9    -1.322888
## 15     1        ID        a5     1.525415
## 16     1        ID       a10     1.284201
## 17     1        ID       a12  -0.05131535
## 18     1        ID       a11  -0.05213253
## 19     1        ID        a8    -2.323727
## 20     1       dam        a2   0.07629914
## 21     1       dam        a1    -0.205709
## 22     1       dam        a3   -0.2856228
## 23     1       dam        a7   0.07904597
## 24     1       dam        a4   -0.2002867
## 25     1       dam        a6   -0.8363825
## 26     1       dam        a9    -0.466576
## 27     1       dam        a5   0.02053787
## 28     1       dam       a10   0.00751982
## 29     1       dam       a12    -0.206505
## 30     1       dam       a11   -0.2423756
## 31     1       dam        a8   -0.6223393

Multivariate Linear Additive Genetic Model

Step 3: Build Model Equations

model_equation2 ="y1 = intercept + x1 + x3 + ID + dam
                  y2 = intercept + x1 + x2 + x3 + ID
                  y3 = intercept + x1 + x1*x3 + x2 + ID"
R = diag(3)

model2 = build_model(model_equation2, R)

Step 4: Set Factors or Covariate

set_covariate(model2, "x1")

Step 5: Set Random or Fixed Effects

G1 = diag(2)
set_random(model2,"x2",G1)
G2 = diag(4)
set_random_ped(model2, "ID dam", pedigree, G2)

Step 6: Run Bayesian Analysis

outputMCMCsamples(model2, "x2")
out2 = runMCMC(model2, phenotypes, chain_length = 5000, output_samples_frequency = 100, outputEBV = TRUE)   

We can select specified result, for example, "EBV_y2"

out2$EBV_y2
##       [,1]  [,2]      
##  [1,] "a2"  0.6062295 
##  [2,] "a1"  -0.6944214
##  [3,] "a7"  -0.7921685
##  [4,] "a12" -0.2416416
##  [5,] "a5"  -0.9816584
##  [6,] "a3"  -0.2682168
##  [7,] "a4"  1.160835  
##  [8,] "a6"  0.2334113 
##  [9,] "a10" -1.8595   
## [10,] "a11" -0.2383322
## [11,] "a8"  1.38478   
## [12,] "a9"  1.332655

Or "out2[1]"

All results

out2
## $EBV_y2
##       [,1]  [,2]      
##  [1,] "a2"  0.6062295 
##  [2,] "a1"  -0.6944214
##  [3,] "a7"  -0.7921685
##  [4,] "a12" -0.2416416
##  [5,] "a5"  -0.9816584
##  [6,] "a3"  -0.2682168
##  [7,] "a4"  1.160835  
##  [8,] "a6"  0.2334113 
##  [9,] "a10" -1.8595   
## [10,] "a11" -0.2383322
## [11,] "a8"  1.38478   
## [12,] "a9"  1.332655  
## 
## $`Posterior mean of polygenic effects covariance matrix`
##             [,1]       [,2]        [,3]        [,4]
## [1,]  2.53764988 -1.5032986 -0.27064753  0.07234178
## [2,] -1.50329859  2.1127901  0.33853987 -0.10457687
## [3,] -0.27064753  0.3385399  0.94876189 -0.08366245
## [4,]  0.07234178 -0.1045769 -0.08366245  0.98494329
## 
## $EBV_y1
##       [,1]  [,2]      
##  [1,] "a2"  0.7280166 
##  [2,] "a1"  0.6580267 
##  [3,] "a7"  0.6361615 
##  [4,] "a12" 0.5752607 
##  [5,] "a5"  2.156187  
##  [6,] "a3"  -0.4688096
##  [7,] "a4"  -0.7570163
##  [8,] "a6"  -0.7570586
##  [9,] "a10" 2.285231  
## [10,] "a11" 0.5526151 
## [11,] "a8"  -1.741143 
## [12,] "a9"  -1.054158 
## 
## $EBV_y3
##       [,1]  [,2]       
##  [1,] "a2"  0.2215576  
##  [2,] "a1"  -0.5713717 
##  [3,] "a7"  -0.612759  
##  [4,] "a12" -0.158376  
##  [5,] "a5"  -0.6377978 
##  [6,] "a3"  0.2545787  
##  [7,] "a4"  -0.1576888 
##  [8,] "a6"  0.004126426
##  [9,] "a10" -0.7603757 
## [10,] "a11" -0.1414264 
## [11,] "a8"  -0.2574019 
## [12,] "a9"  0.419824   
## 
## $`Posterior mean of residual variance`
##             [,1]        [,2]        [,3]
## [1,]  1.70004726 -0.83074652 -0.04949942
## [2,] -0.83074652  1.41029386  0.06950121
## [3,] -0.04949942  0.06950121  0.82406161
## 
## $`Posterior mean of location parameters`
##    Trait    Effect     Level     Estimate
## 1      1 intercept intercept     27.99374
## 2      1        x1        x1     0.573256
## 3      1        x3         m    -29.47289
## 4      1        x3         f    -29.44521
## 5      1        ID        a2    0.3947647
## 6      1        ID        a1    0.5881265
## 7      1        ID        a3   -0.5372246
## 8      1        ID        a7    0.3867613
## 9      1        ID        a4   -0.8821649
## 10     1        ID        a6   -0.5565861
## 11     1        ID        a9    -1.022439
## 12     1        ID        a5     1.866521
## 13     1        ID       a10     1.962364
## 14     1        ID       a12    0.4371826
## 15     1        ID       a11    0.4250572
## 16     1        ID        a8    -1.744681
## 17     1       dam        a2    0.3332519
## 18     1       dam        a1   0.06990018
## 19     1       dam        a3   0.06841504
## 20     1       dam        a7    0.2494001
## 21     1       dam        a4    0.1251486
## 22     1       dam        a6   -0.2004725
## 23     1       dam        a9  -0.03171866
## 24     1       dam        a5    0.2896667
## 25     1       dam       a10    0.3228672
## 26     1       dam       a12    0.1380781
## 27     1       dam       a11    0.1275579
## 28     1       dam        a8  0.003538235
## 29     2 intercept intercept    -4.003138
## 30     2        x1        x1    0.1493666
## 31     2        x2         2 -0.002360669
## 32     2        x2         1   0.03438047
## 33     2        x3         m     8.915057
## 34     2        x3         f     7.779748
## 35     2        ID        a2    0.6062295
## 36     2        ID        a1   -0.6944214
## 37     2        ID        a3   -0.2682168
## 38     2        ID        a7   -0.7921685
## 39     2        ID        a4     1.160835
## 40     2        ID        a6    0.2334113
## 41     2        ID        a9     1.332655
## 42     2        ID        a5   -0.9816584
## 43     2        ID       a10      -1.8595
## 44     2        ID       a12   -0.2416416
## 45     2        ID       a11   -0.2383322
## 46     2        ID        a8      1.38478
## 47     3 intercept intercept  -0.05089487
## 48     3        x1        x1  -0.02038974
## 49     3     x1*x3    x1 * m    -0.749217
## 50     3     x1*x3    x1 * f    0.0405443
## 51     3        x2         2  -0.07135401
## 52     3        x2         1    0.1694405
## 53     3        ID        a2    0.2215576
## 54     3        ID        a1   -0.5713717
## 55     3        ID        a3    0.2545787
## 56     3        ID        a7    -0.612759
## 57     3        ID        a4   -0.1576888
## 58     3        ID        a6  0.004126426
## 59     3        ID        a9     0.419824
## 60     3        ID        a5   -0.6377978
## 61     3        ID       a10   -0.7603757
## 62     3        ID       a12    -0.158376
## 63     3        ID       a11   -0.1414264
## 64     3        ID        a8   -0.2574019


zhaotianjing/JWASr documentation built on May 17, 2019, 3:01 p.m.