Tianjing Zhao August 27, 2018
library("JWASr")
Please make sure you've already set up.
phenotypes = phenotypes #build-in data
You can import your own data by read.table().
JWASr_path = find.package("JWASr") #find the local path of JWASr
JWASr_data_path = paste(JWASr_path,"/extdata/",sep= "") #path for data
ped_path = paste(JWASr_data_path,"pedigree.txt",sep = "") #path for pedigree.txt
You can also use your local data path to define ped_path
.
pedigree = get_pedigree(ped_path, separator=',', header=TRUE)
model_equation1 = "y1 = intercept + x1*x3 + x2 + x3 + ID + dam";
R = 1.0
model1 = build_model(model_equation1, R)
set_covariate(model1, "x1")
G1 = 1.0
set_random(model1, "x2", G1)
G2 = diag(2)
set_random_ped(model1, "ID dam", pedigree, G2)
outputMCMCsamples(model1, "x2")
out = runMCMC(model1, phenotypes, chain_length = 5000, output_samples_frequency = 100)
out
## $`Posterior mean of polygenic effects covariance matrix`
## [,1] [,2]
## [1,] 3.3931469 0.3802194
## [2,] 0.3802194 1.6247857
##
## $`Posterior mean of residual variance`
## [1] 1.778849
##
## $`Posterior mean of location parameters`
## Trait Effect Level Estimate
## 1 1 intercept intercept -30.19578
## 2 1 x1*x3 x1 * m -0.9102935
## 3 1 x1*x3 x1 * f 0.6452522
## 4 1 x2 2 -0.01478697
## 5 1 x2 1 -0.001557767
## 6 1 x3 m 30.17486
## 7 1 x3 f 29.10591
## 8 1 ID a2 0.1050424
## 9 1 ID a1 0.3625167
## 10 1 ID a3 -0.9619355
## 11 1 ID a7 0.1805772
## 12 1 ID a4 -1.284158
## 13 1 ID a6 -0.9379141
## 14 1 ID a9 -1.322888
## 15 1 ID a5 1.525415
## 16 1 ID a10 1.284201
## 17 1 ID a12 -0.05131535
## 18 1 ID a11 -0.05213253
## 19 1 ID a8 -2.323727
## 20 1 dam a2 0.07629914
## 21 1 dam a1 -0.205709
## 22 1 dam a3 -0.2856228
## 23 1 dam a7 0.07904597
## 24 1 dam a4 -0.2002867
## 25 1 dam a6 -0.8363825
## 26 1 dam a9 -0.466576
## 27 1 dam a5 0.02053787
## 28 1 dam a10 0.00751982
## 29 1 dam a12 -0.206505
## 30 1 dam a11 -0.2423756
## 31 1 dam a8 -0.6223393
model_equation2 ="y1 = intercept + x1 + x3 + ID + dam
y2 = intercept + x1 + x2 + x3 + ID
y3 = intercept + x1 + x1*x3 + x2 + ID"
R = diag(3)
model2 = build_model(model_equation2, R)
set_covariate(model2, "x1")
G1 = diag(2)
set_random(model2,"x2",G1)
G2 = diag(4)
set_random_ped(model2, "ID dam", pedigree, G2)
outputMCMCsamples(model2, "x2")
out2 = runMCMC(model2, phenotypes, chain_length = 5000, output_samples_frequency = 100, outputEBV = TRUE)
We can select specified result, for example, "EBV_y2"
out2$EBV_y2
## [,1] [,2]
## [1,] "a2" 0.6062295
## [2,] "a1" -0.6944214
## [3,] "a7" -0.7921685
## [4,] "a12" -0.2416416
## [5,] "a5" -0.9816584
## [6,] "a3" -0.2682168
## [7,] "a4" 1.160835
## [8,] "a6" 0.2334113
## [9,] "a10" -1.8595
## [10,] "a11" -0.2383322
## [11,] "a8" 1.38478
## [12,] "a9" 1.332655
Or "out2[1]"
All results
out2
## $EBV_y2
## [,1] [,2]
## [1,] "a2" 0.6062295
## [2,] "a1" -0.6944214
## [3,] "a7" -0.7921685
## [4,] "a12" -0.2416416
## [5,] "a5" -0.9816584
## [6,] "a3" -0.2682168
## [7,] "a4" 1.160835
## [8,] "a6" 0.2334113
## [9,] "a10" -1.8595
## [10,] "a11" -0.2383322
## [11,] "a8" 1.38478
## [12,] "a9" 1.332655
##
## $`Posterior mean of polygenic effects covariance matrix`
## [,1] [,2] [,3] [,4]
## [1,] 2.53764988 -1.5032986 -0.27064753 0.07234178
## [2,] -1.50329859 2.1127901 0.33853987 -0.10457687
## [3,] -0.27064753 0.3385399 0.94876189 -0.08366245
## [4,] 0.07234178 -0.1045769 -0.08366245 0.98494329
##
## $EBV_y1
## [,1] [,2]
## [1,] "a2" 0.7280166
## [2,] "a1" 0.6580267
## [3,] "a7" 0.6361615
## [4,] "a12" 0.5752607
## [5,] "a5" 2.156187
## [6,] "a3" -0.4688096
## [7,] "a4" -0.7570163
## [8,] "a6" -0.7570586
## [9,] "a10" 2.285231
## [10,] "a11" 0.5526151
## [11,] "a8" -1.741143
## [12,] "a9" -1.054158
##
## $EBV_y3
## [,1] [,2]
## [1,] "a2" 0.2215576
## [2,] "a1" -0.5713717
## [3,] "a7" -0.612759
## [4,] "a12" -0.158376
## [5,] "a5" -0.6377978
## [6,] "a3" 0.2545787
## [7,] "a4" -0.1576888
## [8,] "a6" 0.004126426
## [9,] "a10" -0.7603757
## [10,] "a11" -0.1414264
## [11,] "a8" -0.2574019
## [12,] "a9" 0.419824
##
## $`Posterior mean of residual variance`
## [,1] [,2] [,3]
## [1,] 1.70004726 -0.83074652 -0.04949942
## [2,] -0.83074652 1.41029386 0.06950121
## [3,] -0.04949942 0.06950121 0.82406161
##
## $`Posterior mean of location parameters`
## Trait Effect Level Estimate
## 1 1 intercept intercept 27.99374
## 2 1 x1 x1 0.573256
## 3 1 x3 m -29.47289
## 4 1 x3 f -29.44521
## 5 1 ID a2 0.3947647
## 6 1 ID a1 0.5881265
## 7 1 ID a3 -0.5372246
## 8 1 ID a7 0.3867613
## 9 1 ID a4 -0.8821649
## 10 1 ID a6 -0.5565861
## 11 1 ID a9 -1.022439
## 12 1 ID a5 1.866521
## 13 1 ID a10 1.962364
## 14 1 ID a12 0.4371826
## 15 1 ID a11 0.4250572
## 16 1 ID a8 -1.744681
## 17 1 dam a2 0.3332519
## 18 1 dam a1 0.06990018
## 19 1 dam a3 0.06841504
## 20 1 dam a7 0.2494001
## 21 1 dam a4 0.1251486
## 22 1 dam a6 -0.2004725
## 23 1 dam a9 -0.03171866
## 24 1 dam a5 0.2896667
## 25 1 dam a10 0.3228672
## 26 1 dam a12 0.1380781
## 27 1 dam a11 0.1275579
## 28 1 dam a8 0.003538235
## 29 2 intercept intercept -4.003138
## 30 2 x1 x1 0.1493666
## 31 2 x2 2 -0.002360669
## 32 2 x2 1 0.03438047
## 33 2 x3 m 8.915057
## 34 2 x3 f 7.779748
## 35 2 ID a2 0.6062295
## 36 2 ID a1 -0.6944214
## 37 2 ID a3 -0.2682168
## 38 2 ID a7 -0.7921685
## 39 2 ID a4 1.160835
## 40 2 ID a6 0.2334113
## 41 2 ID a9 1.332655
## 42 2 ID a5 -0.9816584
## 43 2 ID a10 -1.8595
## 44 2 ID a12 -0.2416416
## 45 2 ID a11 -0.2383322
## 46 2 ID a8 1.38478
## 47 3 intercept intercept -0.05089487
## 48 3 x1 x1 -0.02038974
## 49 3 x1*x3 x1 * m -0.749217
## 50 3 x1*x3 x1 * f 0.0405443
## 51 3 x2 2 -0.07135401
## 52 3 x2 1 0.1694405
## 53 3 ID a2 0.2215576
## 54 3 ID a1 -0.5713717
## 55 3 ID a3 0.2545787
## 56 3 ID a7 -0.612759
## 57 3 ID a4 -0.1576888
## 58 3 ID a6 0.004126426
## 59 3 ID a9 0.419824
## 60 3 ID a5 -0.6377978
## 61 3 ID a10 -0.7603757
## 62 3 ID a12 -0.158376
## 63 3 ID a11 -0.1414264
## 64 3 ID a8 -0.2574019
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.