Tianjing Zhao August 27, 2018
library("JWASr")
Please make sure you've already set up.
phenotypes = phenotypes #build-in data
You can import your own data by read.table().
JWASr_path = find.package("JWASr") #find the local path of JWASr
JWASr_data_path = paste(JWASr_path,"/extdata/",sep= "") #path for data
ped_path = paste(JWASr_data_path,"pedigree.txt",sep = "") #path for pedigree.txt
geno_path = paste(JWASr_data_path,"genotypes.txt",sep = "") #path for genotypes.txt
You can also use your local data path to define ped_path
and geno_path
.
pedigree = get_pedigree(ped_path, separator=',', header=TRUE)
model_equation1 = "y1 = intercept + x1*x3 + x2 + x3 + ID + dam";
R = 1.0
model1 = build_model(model_equation1,R)
set_covariate(model1, "x1")
G1 = 1.0
set_random(model1, "x2", G1)
G2 = diag(2)
set_random_ped(model1, "ID dam", pedigree, G2)
G3 = 1.0
add_genotypes(model1, geno_path, G3, separator=',', header = TRUE)
outputMCMCsamples(model1, "x2")
out = runMCMC(model1, phenotypes, methods = "BayesC", estimatePi = TRUE,
chain_length = 5000, output_samples_frequency = 100)
out
## $`Posterior mean of polygenic effects covariance matrix`
## [,1] [,2]
## [1,] 2.2515918 0.3201589
## [2,] 0.3201589 1.7288127
##
## $`Posterior mean of marker effects`
## [,1] [,2]
## [1,] "m1" -0.3528505
## [2,] "m2" -0.2837558
## [3,] "m3" 0.7387871
## [4,] "m4" 0.3174194
## [5,] "m5" 0.3249077
##
## $`Posterior mean of residual variance`
## [1] 1.272377
##
## $`Posterior mean of marker effects variance`
## [1] 0.9280905
##
## $`Posterior mean of location parameters`
## Trait Effect Level Estimate
## 1 1 intercept intercept 11.22084
## 2 1 x1*x3 x1 * m 2.056661
## 3 1 x1*x3 x1 * f 0.9054161
## 4 1 x2 2 0.2748953
## 5 1 x2 1 -0.2128133
## 6 1 x3 m -13.91094
## 7 1 x3 f -13.89881
## 8 1 ID a2 0.2053027
## 9 1 ID a1 0.2089958
## 10 1 ID a3 -0.235355
## 11 1 ID a7 0.04042069
## 12 1 ID a4 -0.3907794
## 13 1 ID a6 -0.1865815
## 14 1 ID a9 -0.2896912
## 15 1 ID a5 0.8834916
## 16 1 ID a10 0.4266387
## 17 1 ID a12 0.07726209
## 18 1 ID a11 0.04771032
## 19 1 ID a8 -0.6744953
## 20 1 dam a2 0.6520092
## 21 1 dam a1 -0.1223837
## 22 1 dam a3 -0.1084323
## 23 1 dam a7 -0.08451849
## 24 1 dam a4 0.2548246
## 25 1 dam a6 -0.4173132
## 26 1 dam a9 0.01880938
## 27 1 dam a5 0.3874218
## 28 1 dam a10 0.1851588
## 29 1 dam a12 0.1197191
## 30 1 dam a11 0.113721
## 31 1 dam a8 -0.03800705
##
## $`Posterior mean of Pi`
## [1] 0.3757778
model_equation2 ="y1 = intercept + x1 + x3 + ID + dam
y2 = intercept + x1 + x2 + x3 + ID
y3 = intercept + x1 + x1*x3 + x2 + ID"
R = diag(3)
model2 = build_model(model_equation2, R)
set_covariate(model2, "x1")
G1 = diag(2)
set_random(model2, "x2", G1)
G2 = diag(4)
set_random_ped(model2, "ID dam", pedigree, G2)
G3 = diag(3)
add_genotypes(model2, geno_path, G3, separator = ',', header = TRUE)
outputMCMCsamples(model2, "x2")
out2 = runMCMC(model2, phenotypes, methods = "BayesC", estimatePi = TRUE, chain_length = 5000, output_samples_frequency = 100)
We can select specified result, for example, "Posterior mean of Pi".
out2$`Posterior mean of Pi`
## $`[1.0, 1.0, 0.0]`
## [1] 0.1414603
##
## $`[0.0, 0.0, 0.0]`
## [1] 0.1157675
##
## $`[1.0, 0.0, 0.0]`
## [1] 0.1405228
##
## $`[0.0, 1.0, 1.0]`
## [1] 0.1104829
##
## $`[1.0, 0.0, 1.0]`
## [1] 0.1323508
##
## $`[0.0, 0.0, 1.0]`
## [1] 0.1092856
##
## $`[1.0, 1.0, 1.0]`
## [1] 0.1338292
##
## $`[0.0, 1.0, 0.0]`
## [1] 0.1163008
All results
out2
## $`Posterior mean of polygenic effects covariance matrix`
## [,1] [,2] [,3] [,4]
## [1,] 1.11046525 -0.301740327 -0.068583319 0.02358558
## [2,] -0.30174033 1.060070354 -0.004732375 -0.01842695
## [3,] -0.06858332 -0.004732375 0.847376902 -0.03139959
## [4,] 0.02358558 -0.018426951 -0.031399592 0.89325743
##
## $`Model frequency`
## Julia Object of type Array{Array{Float64,1},1}.
## Array{Float64,1}[[0.6026, 0.5614, 0.8218, 0.567, 0.588], [0.553, 0.4942, 0.5564, 0.5032, 0.4946], [0.4414, 0.487, 0.487, 0.445, 0.4712]]
## $`Posterior mean of marker effects`
## $`Posterior mean of marker effects`[[1]]
## [,1] [,2]
## [1,] "m1" -0.348707
## [2,] "m2" -0.2568689
## [3,] "m3" 0.9459965
## [4,] "m4" 0.2666736
## [5,] "m5" 0.2858568
##
## $`Posterior mean of marker effects`[[2]]
## [,1] [,2]
## [1,] "m1" 0.3013397
## [2,] "m2" 0.1372816
## [3,] "m3" -0.3487142
## [4,] "m4" -0.1126686
## [5,] "m5" -0.07387788
##
## $`Posterior mean of marker effects`[[3]]
## [,1] [,2]
## [1,] "m1" 0.01560571
## [2,] "m2" -0.1257267
## [3,] "m3" -0.1909362
## [4,] "m4" -0.04438518
## [5,] "m5" 0.01595111
##
##
## $`Posterior mean of marker effects covariance matrix`
## [,1] [,2] [,3]
## [1,] 0.78742143 -0.08543852 -0.04644018
## [2,] -0.08543852 0.59608915 -0.01831761
## [3,] -0.04644018 -0.01831761 0.48020575
##
## $`Posterior mean of residual variance`
## [,1] [,2] [,3]
## [1,] 1.17370351 -0.41981751 -0.02838261
## [2,] -0.41981751 1.15984119 -0.08667158
## [3,] -0.02838261 -0.08667158 0.79706916
##
## $`Posterior mean of marker effects variance`
## [,1] [,2] [,3]
## [1,] 0.78742143 -0.08543852 -0.04644018
## [2,] -0.08543852 0.59608915 -0.01831761
## [3,] -0.04644018 -0.01831761 0.48020575
##
## $`Posterior mean of location parameters`
## Trait Effect Level Estimate
## 1 1 intercept intercept 32.21929
## 2 1 x1 x1 0.9131961
## 3 1 x3 m -34.01638
## 4 1 x3 f -34.52477
## 5 1 ID a2 -0.05716014
## 6 1 ID a1 0.1868688
## 7 1 ID a3 -0.1949345
## 8 1 ID a7 0.02883038
## 9 1 ID a4 -0.4025737
## 10 1 ID a6 -0.1724982
## 11 1 ID a9 -0.2828338
## 12 1 ID a5 0.5386816
## 13 1 ID a10 0.2722372
## 14 1 ID a12 -0.02503967
## 15 1 ID a11 0.006221662
## 16 1 ID a8 -0.7136537
## 17 1 dam a2 0.4407947
## 18 1 dam a1 -0.1395491
## 19 1 dam a3 -0.1564929
## 20 1 dam a7 -0.1141477
## 21 1 dam a4 0.1523033
## 22 1 dam a6 -0.3848841
## 23 1 dam a9 -0.05133943
## 24 1 dam a5 0.1656039
## 25 1 dam a10 0.05150225
## 26 1 dam a12 -0.001888326
## 27 1 dam a11 0.03107539
## 28 1 dam a8 -0.1094652
## 29 2 intercept intercept -16.22043
## 30 2 x1 x1 0.1656188
## 31 2 x2 2 -0.1952748
## 32 2 x2 1 0.326396
## 33 2 x3 m 21.33518
## 34 2 x3 f 19.79537
## 35 2 ID a2 0.2806208
## 36 2 ID a1 -0.3204084
## 37 2 ID a3 0.0278819
## 38 2 ID a7 0.01188378
## 39 2 ID a4 0.4665653
## 40 2 ID a6 0.1094586
## 41 2 ID a9 0.2222683
## 42 2 ID a5 -0.2349071
## 43 2 ID a10 -0.1280968
## 44 2 ID a12 0.04255067
## 45 2 ID a11 0.01549121
## 46 2 ID a8 0.7771148
## 47 3 intercept intercept -0.5473773
## 48 3 x1 x1 -9.20709
## 49 3 x1*x3 x1 * m 9.027483
## 50 3 x1*x3 x1 * f 9.320441
## 51 3 x2 2 -0.07216963
## 52 3 x2 1 0.01347271
## 53 3 ID a2 -0.1511818
## 54 3 ID a1 -0.3940017
## 55 3 ID a3 0.3949147
## 56 3 ID a7 -0.2806019
## 57 3 ID a4 -0.2590409
## 58 3 ID a6 -0.1215465
## 59 3 ID a9 -0.2386465
## 60 3 ID a5 -0.4399348
## 61 3 ID a10 -0.3477279
## 62 3 ID a12 -0.3080151
## 63 3 ID a11 -0.2786712
## 64 3 ID a8 -0.2663514
##
## $`Posterior mean of Pi`
## $`Posterior mean of Pi`$`[1.0, 1.0, 0.0]`
## [1] 0.1414603
##
## $`Posterior mean of Pi`$`[0.0, 0.0, 0.0]`
## [1] 0.1157675
##
## $`Posterior mean of Pi`$`[1.0, 0.0, 0.0]`
## [1] 0.1405228
##
## $`Posterior mean of Pi`$`[0.0, 1.0, 1.0]`
## [1] 0.1104829
##
## $`Posterior mean of Pi`$`[1.0, 0.0, 1.0]`
## [1] 0.1323508
##
## $`Posterior mean of Pi`$`[0.0, 0.0, 1.0]`
## [1] 0.1092856
##
## $`Posterior mean of Pi`$`[1.0, 1.0, 1.0]`
## [1] 0.1338292
##
## $`Posterior mean of Pi`$`[0.0, 1.0, 0.0]`
## [1] 0.1163008
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.