An R Package for Fitting Bayesian Nested Partially Latent Class Models
Maintainer: Zhenke Wu, zhenkewu@umich.edu
Source Code: Please click here for source code on GitHub.
Issues: Please click here to report reproducible issues.
Vignette: Please click here to read the latest long-version vignette; a short version can be found here.
Package website: Please click here
for a website generated by pkgdown
, which contains html format of the
package manual (“Refence”).
References: If you are using baker for population and individual estimation from case-control data, please cite the following papers:
| | Citation |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| partially Latent Class Models (pLCM) | Wu, Z., Deloria-Knoll, M., Hammitt, L. L., Zeger, S. L. and the Pneumonia Etiology Research for Child Health Core Team (2016), Partially latent class models for case–control studies of childhood pneumonia aetiology. J. R. Stat. Soc. C, 65: 97–114. |
| nested pLCM | Wu, Z., Deloria-Knoll, M., Zeger, S.L.; Nested partially latent class models for dependent binary data; estimating disease etiology. Biostatistics 2017; 18 (2): 200-213. |
| nested pLCM regression | Wu, Z., Chen, I (2021). Probabilistic Cause-of-disease Assignment using Case-control Diagnostic Tests: A Hierarchical Bayesian Approach. Statistics in Medicine 40(4):823-841. |
| Application | Maria Deloria Knoll, Wei Fu, Qiyuan Shi, Christine Prosperi, Zhenke Wu, Laura L. Hammitt, Daniel R. Feikin, Henry C. Baggett, Stephen R.C. Howie, J. Anthony G. Scott, David R. Murdoch, Shabir A. Madhi, Donald M. Thea, W. Abdullah Brooks, Karen L. Kotloff, Mengying Li, Daniel E. Park, Wenyi Lin, Orin S. Levine, Katherine L. O’Brien, Scott L. Zeger; Bayesian Estimation of Pneumonia Etiology: Epidemiologic Considerations and Applications to the Pneumonia Etiology Research for Child Health Study, Clinical Infectious Diseases, Volume 64, Issue suppl_3, 15 June 2017, Pages S213–S227 |
| Primary PERCH Analysis | The PERCH Study Group (2019). Aetiology of severe hospitalized pneumonia in HIV-uninfected children from Africa and Asia: the Pneumonia Aetiology Research for Child Health (PERCH) Case-Control Study. The Lancet 394(10200): 757-779. 30721--4-yellow.svg) |
| Software paper | Chen I, Shi Q, Zeger SL, Wu Z (2022+) baker
: An R
package for Nested Partially-Latent Class Models. |
There are a number of scientific papers on global health and infectious diseases that have used the model and some the software (in its earlier versions). Some notable examples are listed below:
| | Notable References using baker
(model and/or software) |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Kubale et al. (2023). Etiology of acute lower respiratory illness hospitalizations among infants in four countries. Open Forum Infectious Diseases, ofad580. |
| 2 | Saha SK et al. (2018). Causes and incidence of community-acquired serious infections among young children in south Asia (ANISA): an observational cohort study. The Lancet 392(10142):145-159. 31127--9-green.svg) |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.