Description Usage Arguments Value Methods (by generic) See Also
View source: R/MinimumDistance.R
This function implements the esmation and large sample inference for Minimum-Distance Estimator.
1 2 3 4 5 6 | MinimumDistance(DatR, VarR, DatY, VarY, variogram.model,
MD.starting.value, cutoff.R, cutoff.YR,
start.value.method = 2, projected = FALSE)
## S3 method for class 'MinimumDistance'
summary(object, ...)
|
DatR |
explanatory variable R, a spatial object, see coordintes() |
VarR |
name of variable R |
DatY |
outcome variable Y, a spatial object, see coordintes() |
VarY |
name of variable Y |
variogram.model |
variogram model type, e.g. "Exp", "Sph", "Gau", "Mat" |
MD.starting.value |
the starting point of parameters |
cutoff.R |
cutoff for sample variogram of variable R |
cutoff.YR |
cutoff for sample cross variogram of variable R and Y |
start.value.method |
fitting method, see fit.variogram() |
projected |
logical; if FALSE, data are assumed to be unprojected, meaning decimal longitude/latitude. For projected data, Euclidian distances are computed, for unprojected great circle distances(km) are computed. |
object |
class |
|
the number of observations |
|
point estimates for variogram parameters(psill, range) |
|
estimated variance-covariance matrix for variogram parameters(psill, range) |
|
point estimates for Min-Dist estimator |
|
estimated aymptotic variance for Min-Dist estimator |
summary
: summary
method for class "MinimumDistance
".
sp, gstat
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.