MinimumDistance: Estimation and Inference for Minimum-Distance Estimator

Description Usage Arguments Value Methods (by generic) See Also

View source: R/MinimumDistance.R

Description

This function implements the esmation and large sample inference for Minimum-Distance Estimator.

Usage

1
2
3
4
5
6
MinimumDistance(DatR, VarR, DatY, VarY, variogram.model,
                       MD.starting.value, cutoff.R, cutoff.YR,
                       start.value.method = 2, projected = FALSE)

## S3 method for class 'MinimumDistance'
summary(object, ...)

Arguments

DatR

explanatory variable R, a spatial object, see coordintes()

VarR

name of variable R

DatY

outcome variable Y, a spatial object, see coordintes()

VarY

name of variable Y

variogram.model

variogram model type, e.g. "Exp", "Sph", "Gau", "Mat"

MD.starting.value

the starting point of parameters

cutoff.R

cutoff for sample variogram of variable R

cutoff.YR

cutoff for sample cross variogram of variable R and Y

start.value.method

fitting method, see fit.variogram()

projected

logical; if FALSE, data are assumed to be unprojected, meaning decimal longitude/latitude. For projected data, Euclidian distances are computed, for unprojected great circle distances(km) are computed.

object

class MinimumDistance objects.

Value

num.obs

the number of observations

vario.par.point.est

point estimates for variogram parameters(psill, range)

vario.par.var.mat

estimated variance-covariance matrix for variogram parameters(psill, range)

md.point.est

point estimates for Min-Dist estimator

md.var.mat

estimated aymptotic variance for Min-Dist estimator

Methods (by generic)

See Also

sp, gstat


zhenxie23/SpReg documentation built on March 26, 2021, 3:09 a.m.