epsgo: Efficient Parameter Selection via Global Optimization

View source: R/EPSGO.R

epsgoR Documentation

Efficient Parameter Selection via Global Optimization

Description

Finds an optimal solution for the Q.func function.

Usage

epsgo(
  Q.func,
  bounds,
  bound.scale = NA,
  x,
  y,
  z = z,
  family = "gaussian",
  lambda = NULL,
  alpha = 1,
  p = NULL,
  intercept = TRUE,
  foldid = NULL,
  nfolds = 10,
  cv.measure = NULL,
  type.min = "lambda.min",
  tree.parm = tree.parm,
  num.nonpen = 0,
  strata.surv = NULL,
  threshold = 0,
  mu = 0.01,
  NoVar = 50,
  standardize.response = FALSE,
  round.n = 5,
  parms.coding = "none",
  fminlower = 0,
  flag.find.one.min = FALSE,
  show = "none",
  N = NULL,
  maxevals = 500,
  constantMean = 0,
  epsilon = 1e-04,
  Dir.ep = 1e-04,
  Dir.tol = 0.01,
  EI.eps = 0.01,
  min.iter = 10,
  pdf.name = NULL,
  pdf.width = 12,
  pdf.height = 12,
  my.mfrow = c(1, 1),
  parallel = FALSE,
  modelList = NULL,
  verbose = TRUE,
  seed = 123,
  search.path = FALSE,
  tol = tol,
  y.mis = y.mis,
  x.mis = x.mis,
  t.idx = t.idx,
  t.glasso = FALSE,
  maxiter = 10000,
  cov.proxy = "FL",
  predict.re = FALSE,
  ...
)

Arguments

Q.func

name of the function to be minimized.

bounds

bounds for the interval-searching parameters

x, y

input matrix.

family

response type.

lambda

optional user-supplied lambda sequence; default is NULL, and espsgo chooses its own sequence.

p

the numbers of predictors from different data sources.

intercept

should intercept(s) be fitted (default=TRUE) or set to zero (FALSE).

foldid

an vector of values for the cross-validation.

num.nonpen

number of predictors forced to be estimated (i.e., nonpenalization).

strata.surv

stratification variable for the Cox survival model.

threshold

threshold for estimated coefficients of the tree-lasso models.

standardize.response

standardization for the response variables. Default: TRUE.

round.n

number of digits after comma, default is 5.

parms.coding

parmeters coding: none or log2, default: none.

fminlower

minimal value for the function Q.func, default is 0.

flag.find.one.min

do you want to find one min value and stop? Default: FALSE.

show

show plots of DIRECT algorithm: none, final iteration, all iterations. Default: none.

N

define the number of start points depending on the dimensionality of the parameter space.

maxevals

the maximum number of DIRECT function evaluations, default: 500.

EI.eps

the convergence threshold for the expected improvement between fmin and the updated point

min.iter

the minimus iterations after the initial N iterations.

parallel

If TRUE, use parallel foreach to fit each fold except parallelizing each lambda for the tree-lasso methods. If c(TRUE,TRUE), use parallel foreach to fit each fold and each lambda.

modelList

detailed information of the search process

verbose

print the middle search information, default is TRUE.

seed

random seed

search.path

save the visited points, default is FALSE.

espilon

the convergence shreshold for the function Q.func, default is 0.01.

Details

mixlasso

References

Frohlich, H. & Zell, A. (2005). Efficient Parameter Selection for Support Vector Machines in Clas- sification and Regression via Model-Based Global Optimization. Proceedings of the International Joint Conference of Neural Networks, pp 1431-1438.

Sill, M., Hielscher, T., Becker, N. & Zucknick, M. (2014).c060: Extended Inference with Lasso and elastic net Regularized Cox and Generalized Linear methods. Journal of Statistical Software, 62(5):1-22.


zhizuio/mixlasso documentation built on March 21, 2022, 1:07 a.m.