epsgo | R Documentation |
Finds an optimal solution for the Q.func
function.
epsgo( Q.func, bounds, bound.scale = NA, x, y, z = z, family = "gaussian", lambda = NULL, alpha = 1, p = NULL, intercept = TRUE, foldid = NULL, nfolds = 10, cv.measure = NULL, type.min = "lambda.min", tree.parm = tree.parm, num.nonpen = 0, strata.surv = NULL, threshold = 0, mu = 0.01, NoVar = 50, standardize.response = FALSE, round.n = 5, parms.coding = "none", fminlower = 0, flag.find.one.min = FALSE, show = "none", N = NULL, maxevals = 500, constantMean = 0, epsilon = 1e-04, Dir.ep = 1e-04, Dir.tol = 0.01, EI.eps = 0.01, min.iter = 10, pdf.name = NULL, pdf.width = 12, pdf.height = 12, my.mfrow = c(1, 1), parallel = FALSE, modelList = NULL, verbose = TRUE, seed = 123, search.path = FALSE, tol = tol, y.mis = y.mis, x.mis = x.mis, t.idx = t.idx, t.glasso = FALSE, maxiter = 10000, cov.proxy = "FL", predict.re = FALSE, ... )
Q.func |
name of the function to be minimized. |
bounds |
bounds for the interval-searching parameters |
x, y |
input matrix. |
family |
response type. |
lambda |
optional user-supplied |
p |
the numbers of predictors from different data sources. |
intercept |
should intercept(s) be fitted (default= |
foldid |
an vector of values for the cross-validation. |
num.nonpen |
number of predictors forced to be estimated (i.e., nonpenalization). |
strata.surv |
stratification variable for the Cox survival model. |
threshold |
threshold for estimated coefficients of the tree-lasso models. |
standardize.response |
standardization for the response variables. Default: |
round.n |
number of digits after comma, default is |
parms.coding |
parmeters coding: none or log2, default: |
fminlower |
minimal value for the function Q.func, default is 0. |
flag.find.one.min |
do you want to find one min value and stop? Default: |
show |
show plots of DIRECT algorithm: none, final iteration, all iterations. Default: |
N |
define the number of start points depending on the dimensionality of the parameter space. |
maxevals |
the maximum number of DIRECT function evaluations, default: 500. |
EI.eps |
the convergence threshold for the expected improvement between fmin and the updated point |
min.iter |
the minimus iterations after the initial |
parallel |
If |
modelList |
detailed information of the search process |
verbose |
print the middle search information, default is |
seed |
random seed |
search.path |
save the visited points, default is |
espilon |
the convergence shreshold for the function |
mixlasso
Frohlich, H. & Zell, A. (2005). Efficient Parameter Selection for Support Vector Machines in Clas- sification and Regression via Model-Based Global Optimization. Proceedings of the International Joint Conference of Neural Networks, pp 1431-1438.
Sill, M., Hielscher, T., Becker, N. & Zucknick, M. (2014).c060: Extended Inference with Lasso and elastic net Regularized Cox and Generalized Linear methods. Journal of Statistical Software, 62(5):1-22.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.