grey_models | R Documentation |
Implements grey prediction models for time series forecasting:
GM11
applies the GM(1,1) model with level ratio test.
GM1N
applies the GM(1,N) model with multiple related factors.
DGM21
applies the DGM(2,1) model for second-order dynamics.
verhulst
applies the Verhulst model for logistic growth.
GM11(X)
<<<<<<< HEAD
GM1N(dat, new_data = NULL)
=======
GM1N(dat)
>>>>>>> 3e92d3d55418301db33a496b2db922076ea97b15
DGM21(X)
verhulst(X)
X |
For |
dat |
For |
For GM11
: List with fitted values (fitted
), next prediction (pnext
), prediction function (f
), matrix (mat
), parameters (u
), level ratios (lambda
), and range (rng
).
For GM1N
: List with fitted values (fitted
), posterior variance ratio (C
), small error probability (P
), and prediction function (f
).
For DGM21
, verhulst
: List with fitted values (fitted
), next prediction (pnext
), prediction function (f
), matrix (mat
), and parameters (u
).
# Sample time series for GM11, DGM21, Verhulst
x = c(100, 120, 145, 175, 210)
# GM11
result = GM11(x)
result$fitted # Fitted values
result$pnext # Next prediction
result$f(6:8) # Predict next 3 periods
# DGM21
x = c(2.874,3.278,3.39,3.679,3.77,3.8)
result = DGM21(x)
result$fitted # Fitted values
result$pnext # Next prediction
result$f(6:8) # Predict next 3 periods
# Verhulst
x = c(4.93,2.33,3.87,4.35,6.63,7.15,5.37,6.39,7.81,8.35)
result = verhulst(x)
result$fitted # Fitted values
result$pnext # Next prediction
result$f(6:8) # Predict next 3 periods
# Sample data for GM1N
data = data.frame(
factor1 = c(50, 55, 60, 65, 70),
factor2 = c(20, 22, 25, 28, 30),
output = c(100, 120, 145, 175, 210)
)
result = GM1N(data)
result$fitted
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.