linda.wald.test | R Documentation |
The function implements Wald test for bias-corrected regression coefficient learned from the linda
function.
One can utilize the function to perform ANOVA-type analyses.
linda.wald.test(
linda.obj,
L,
model = c("LM", "LMM"),
alpha = 0.05,
p.adj.method = "BH"
)
linda.obj |
return from the |
L |
A matrix for testing |
model |
|
alpha |
significance level for testing |
p.adj.method |
P-value adjusting approach. See R function |
A data frame with columns
Fstat |
Wald statistics for each taxon |
df1 |
The numerator degrees of freedom |
df2 |
The denominator degrees of freedom |
pvalue |
|
padj |
|
reject |
|
Huijuan Zhou huijuanzhou2019@gmail.com Jun Chen Chen.Jun2@mayo.edu Xianyang Zhang zhangxiany@stat.tamu.edu
Huijuan Zhou, Kejun He, Jun Chen, and Xianyang Zhang. LinDA: Linear Models for Differential Abundance Analysis of Microbiome Compositional Data.
#install package "phyloseq" for importing "smokers" dataset
ind <- smokers$meta$AIRWAYSITE == 'Throat'
otu.tab <- as.data.frame(smokers$otu[, ind])
meta <- cbind.data.frame(Smoke = factor(smokers$meta$SMOKER[ind]),
Sex = factor(smokers$meta$SEX[ind]),
Site = factor(smokers$meta$SIDEOFBODY[ind]),
SubjectID = factor(smokers$meta$HOST_SUBJECT_ID[ind]))
linda.obj <- linda(otu.tab, meta, formula = '~Smoke+Sex+(1|SubjectID)+(Smoke|Site)', alpha = 0.1,
prev.cut = 0.1, lib.cut = 1000, winsor.quan = 0.97)
L <- matrix(c(0, 1, 0, 0, 0, 1), nrow = 2, byrow = TRUE)
result <- linda.wald.test(linda.obj, L, 'LMM', alpha = 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.