| linda.wald.test | R Documentation | 
The function implements Wald test for bias-corrected regression coefficient learned from the linda function.
One can utilize the function to perform ANOVA-type analyses.
linda.wald.test(
  linda.obj,
  L,
  model = c("LM", "LMM"),
  alpha = 0.05,
  p.adj.method = "BH"
)
linda.obj | 
 return from the   | 
L | 
 A matrix for testing   | 
model | 
 
  | 
alpha | 
 significance level for testing   | 
p.adj.method | 
 P-value adjusting approach. See R function   | 
A data frame with columns
Fstat | 
 Wald statistics for each taxon  | 
df1 | 
 The numerator degrees of freedom  | 
df2 | 
 The denominator degrees of freedom  | 
pvalue | 
 
  | 
padj | 
 
  | 
reject | 
 
  | 
Huijuan Zhou huijuanzhou2019@gmail.com Jun Chen Chen.Jun2@mayo.edu Xianyang Zhang zhangxiany@stat.tamu.edu
Huijuan Zhou, Kejun He, Jun Chen, and Xianyang Zhang. LinDA: Linear Models for Differential Abundance Analysis of Microbiome Compositional Data.
#install package "phyloseq" for importing "smokers" dataset
ind <- smokers$meta$AIRWAYSITE == 'Throat'
otu.tab <- as.data.frame(smokers$otu[, ind])
meta <- cbind.data.frame(Smoke = factor(smokers$meta$SMOKER[ind]),
                         Sex = factor(smokers$meta$SEX[ind]),
                         Site = factor(smokers$meta$SIDEOFBODY[ind]),
                         SubjectID = factor(smokers$meta$HOST_SUBJECT_ID[ind]))
linda.obj <- linda(otu.tab, meta, formula = '~Smoke+Sex+(1|SubjectID)+(Smoke|Site)', alpha = 0.1,
                   prev.cut = 0.1, lib.cut = 1000, winsor.quan = 0.97)
L <- matrix(c(0, 1, 0, 0, 0, 1), nrow = 2, byrow = TRUE)
result <- linda.wald.test(linda.obj, L, 'LMM', alpha = 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.