SpotIV | R Documentation |
Perform causal inference in the semi-parametric outcome model with possibly invalid IVs.
SpotIV( Y, D, Z, X = NULL, intercept = TRUE, invalid = FALSE, d1, d2, w0, M.est = TRUE, M = 2, bs.Niter = 40, bw = NULL )
Y |
The outcome observation, a vector of length n. |
D |
The treatment observation, a vector of length n. |
Z |
The instrument observation of dimension n \times p_z. |
X |
The covariates observation of dimension n \times p_x. |
intercept |
Whether the intercept is included. (default = |
invalid |
If TRUE, the method is robust to the presence of possibly invalid IVs; If FALSE, the method assumes all IVs to be valid. (default = |
d1 |
A treatment value for computing CATE(d1,d2|w0). |
d2 |
A treatment value for computing CATE(d1,d2|w0). |
w0 |
A value of measured covariates and instruments for computing CATE(d1,d2|w0). |
M.est |
If |
M |
The dimension of indices in the outcome model, from 1 to 3. (default = |
bs.Niter |
The number of bootstrap resampling size for computing the confidence interval. (default = |
bw |
A (M+1) by 1 vector bandwidth specification. (default = |
SpotIV
returns an object of class "SpotIV", which "SpotIV" is a list containing the following components:
|
The estimate of the model parameter in front of the treatment. |
|
The estimate of CATE(d1,d2|w0). |
|
The estimated standard error of cateHat. |
|
The set of relevant IVs. |
|
The set of relevant and valid IVs. |
|
The indicator that the majority rule is satisfied. |
Li, S., Guo, Z. (2020), Causal Inference for Nonlinear Outcome Models with Possibly Invalid Instrumental Variables, Preprint arXiv:2010.09922.
## Not run: Y <- mroz[,"lwage"] D <- mroz[,"educ"] Z <- as.matrix(mroz[,c("motheduc","fatheduc","huseduc","exper","expersq")]) X <- mroz[,"age"] Y0 <- as.numeric((Y>median(Y))) d2 = median(D); d1 = d2+1; w0 = apply(cbind(Z,X)[which(D == d2),], 2, mean) SpotIV.model <- SpotIV(Y0,D,Z[,-5],X,d1 = d1,d2 = d2,w0 = w0[-5]) summary(SpotIV.model) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.