glmadj | R Documentation |
Availabel methods for glmadj
objects: print coefficients, summary,
prediction
## S3 method for class 'glmadj'
print(x, ...)
## S3 method for class 'glmadj'
summary(object, ...)
## S3 method for class 'summary.glmadj'
print(x, ...)
## S3 method for class 'glmadj'
predict(object, newdata = NULL, ...)
x |
A |
... |
Additional parameters |
object |
A |
newdata |
A data frame created with model.frame. |
summary.glmadj
returns a summary table with four columns
ajusted_mle \hat{\beta}_j^\mathrm{Adj} = \hat{\beta}_j^\mathrm{MLE} / \alpha_\star
.
adjusted_std. Standard error of the adjusted MLE \hat{\sigma}_j / \alpha_\star = \sigma_\star / \alpha_\star \tau_j
.
t.value t_j = \hat{\beta}_j^\mathrm{MLE} / \hat{\sigma}_j
. When \beta_j = 0
, t_j
is approximately
a standard Gaussian as n,p \to\infty
.
p.value 2-sided p-value using t.value to test whether \beta_j = 0
.
adjust_glm
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.