# Inference for Cumulative Incidence Curves
Zachary McCaw Updated: 20-12-24
This package provides functions for inference on the difference in AUCs, event rates, and quantiles comparing two cumulative incidence curves. Also see MCC for inference on mean cumulative count curves.
devtools::install_github(repo = "zrmacc/CICs")
The function GenTwoSampleData
simulates example data in the format expected by this package. The censoring, event, and death times are drawn from independent exponential distributions. Note that 'rate' refers to the arrival rate of the corresponding exponential rather than the proportion of the sample.
library(CICs)
# Generate data.
data <- GenTwoSampleData(
n1 = 200,
n0 = 200,
censor_rate1 = 0.25,
censor_rate0 = 0.25,
event_rate1 = 0.50,
event_rate0 = 0.75,
death_rate1 = 0.25,
death_rate0 = 0.25
)
# Add strata.
strata <- rmultinom(n = 400, size = 1, prob = c(0.3, 0.4, 0.3))
data$strata <- apply(strata, 2, which.max)
head(data)
## time status arm strata
## 1 0.4669380 1 1 2
## 2 2.0153491 1 1 3
## 3 0.9062862 0 1 3
## 4 1.9460783 0 1 1
## 5 0.6581468 2 1 2
## 6 0.5718448 1 1 1
In these data, arm
is the treatment arm, 0 for reference, 1 for treatment; time
is the observation time; and status
is the event type, 0 for censoring, 1 for an event, 2 for death. For analysing other data sets, arm
should likewise be coded as 0/1, and status as 0/1/2, with status 1 identifying the event of interest.
To find a confidence interval and p-vaue for the difference and ratio in areas under the cumulative incidence curve at time $\tau = 2$:
aucs <- CompareCICs(
time = data$time,
status = data$status,
arm = data$arm,
strata = data$strata,
sum_stat = "AUC",
param = 2,
reps = 100,
alpha = 0.05
)
show(aucs)
## Marginal Stats:
## # A tibble: 2 x 4
## arm stat n est
## <dbl> <chr> <int> <dbl>
## 1 0 AUC 200 0.845
## 2 1 AUC 200 0.683
##
##
## CIs:
## contrast est lower upper
## boot_diff A1-A0 -0.1624119 -0.2684778 -0.04445343
## boot_ratio A1/A0 0.8078946 0.6961344 0.94427490
##
##
## P-values:
## contrast est perm_p boot_p
## 1 A1-A0 -0.1624119 0.05940594 0.05940594
## 2 A1/A0 0.8078946 0.07920792 0.05940594
##
##
## Stratum Stats:
## # A tibble: 3 x 9
## strata weight stat n0 n1 est0 est1 diff ratio
## <int> <dbl> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 1 0.3 AUC 48 72 0.830 0.729 -0.101 0.878
## 2 2 0.44 AUC 96 80 0.867 0.651 -0.216 0.751
## 3 3 0.26 AUC 56 48 0.827 0.685 -0.142 0.828
Replace "AUC" by "AOC" for area over the cumulative incidence curve.
For inference on the difference and ratio of event rates at $\tau = 2$:
rates <- CompareCICs(
time = data$time,
status = data$status,
arm = data$arm,
strata = data$strata,
sum_stat = 'Rate',
param = 2,
reps = 100,
alpha = 0.05
)
show(rates)
## Marginal Stats:
## # A tibble: 2 x 4
## arm stat n est
## <dbl> <chr> <int> <dbl>
## 1 0 Rate 200 0.660
## 2 1 Rate 200 0.505
##
##
## CIs:
## contrast est lower upper
## boot_diff A1-A0 -0.1548808 -0.2309364 -0.05149196
## boot_ratio A1/A0 0.7651985 0.6618048 0.91587069
##
##
## P-values:
## contrast est perm_p boot_p
## 1 A1-A0 -0.1548808 0.01980198 0.01980198
## 2 A1/A0 0.7651985 0.01980198 0.01980198
##
##
## Stratum Stats:
## # A tibble: 3 x 9
## strata weight stat n0 n1 est0 est1 diff ratio
## <int> <dbl> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 1 0.3 Rate 48 72 0.666 0.583 -0.0829 0.876
## 2 2 0.44 Rate 96 80 0.638 0.449 -0.189 0.704
## 3 3 0.26 Rate 56 48 0.689 0.508 -0.180 0.738
To compare the difference and ratio of medians:
quants <- CompareCICs(
time = data$time,
status = data$status,
arm = data$arm,
strata = data$strata,
sum_stat = 'Quantile',
param = 0.5,
reps = 100,
alpha = 0.05
)
show(quants)
## Marginal Stats:
## # A tibble: 2 x 4
## arm stat n est
## <dbl> <chr> <int> <dbl>
## 1 0 Quantile 200 1.06
## 2 1 Quantile 200 1.85
##
##
## CIs:
## contrast est lower upper
## boot_diff A1-A0 0.7963396 0.08973706 2.416764
## boot_ratio A1/A0 1.7527690 1.07271141 3.495009
##
##
## P-values:
## contrast est perm_p boot_p
## 1 A1-A0 0.7963396 0.05940594 0.04301075
## 2 A1/A0 1.7527690 0.03960396 0.04301075
##
##
## Stratum Stats:
## # A tibble: 3 x 9
## strata weight stat n0 n1 est0 est1 diff ratio
## <int> <dbl> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 1 0.3 Quantile 48 72 1.07 1.29 0.213 1.20
## 2 2 0.44 Quantile 96 80 1.00 2.61 1.61 2.61
## 3 3 0.26 Quantile 56 48 1.14 1.23 0.0937 1.08
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.