Zachary R. McCaw Updated: 2024-08-04
suppressPackageStartupMessages({
library(dplyr)
library(SurvUtils)
})
devtools::install_github(repo = "zrmacc/SurvUtils")
Generates survival data with exponential event times and censoring. Optionally, the subject-specific event rate may depend on a set of covariates and/or a gamma-frailty.
data <- SurvUtils::GenData(
base_event_rate = 1.0,
censoring_rate = 0.25,
n = 100,
tau = 4.0
)
head(data)
## idx time status
## 1 1 0.647678901 1
## 2 2 0.007453288 1
## 3 3 0.425188254 1
## 4 4 1.640308589 1
## 5 5 0.060364399 1
## 6 6 0.180278373 1
km_tab <- SurvUtils::TabulateKM(data)
head(km_tab)
## # A tibble: 6 × 13
## time censor events nar haz cum_haz cum_haz_var cum_haz_lower
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 0 0 100 0 0 0 0
## 2 0.0000786 0 1 100 0.01 0.01 0.0001 0.00141
## 3 0.00442 1 0 99 0 0.01 0.0001 0.00141
## 4 0.00745 0 1 98 0.0102 0.0202 0.000204 0.00505
## 5 0.0169 0 1 97 0.0103 0.0305 0.000310 0.00984
## 6 0.0220 0 1 96 0.0104 0.0409 0.000419 0.0154
## # ℹ 5 more variables: cum_haz_upper <dbl>, surv <dbl>, surv_var <dbl>,
## # surv_lower <dbl>, surv_upper <dbl>
# Rate.
SurvUtils::OneSampleRates(data, tau = 1.0)
## tau rate se lower upper
## 1 1 0.3462829 0.0492781 0.2516968 0.4425296
# Percentile: median.
SurvUtils::OneSamplePercentiles(data, p = 0.5)
## prob time lower upper
## 1 0.5 0.6742626 0.4251883 0.7910864
# RMST.
SurvUtils::OneSampleRMST(data, tau = 1.0)
## tau auc se lower upper
## 1 1 0.5986377 0.03840798 0.5233595 0.673916
data0 <- SurvUtils::GenData(
base_event_rate = 1.0,
censoring_rate = 0.25,
n = 100,
tau = 4.0
)
data0$arm <- 0
data1 <- SurvUtils::GenData(
base_event_rate = 0.5,
censoring_rate = 0.25,
n = 100,
tau = 4.0
)
data1$arm <- 1
data <- rbind(data0, data1)
SurvUtils::CompareRates(data, tau = 1.0)
## Marginal Statistics:
## arm tau rate se
## 1 0 1 0.358 0.0496
## 2 1 1 0.597 0.0531
##
##
## Contrasts:
## stat est se lower upper p
## 1 rd 0.239 0.0726 0.0968 0.382 0.000993
## 2 rr 1.670 0.2740 1.2100 2.300 0.001880
## 3 or 2.660 0.8200 1.4500 4.870 0.001530
SurvUtils::CompareRMSTs(data, tau = 1.0)
## Marginal Statistics:
## tau auc se lower upper arm
## 1 1 0.579 0.0386 0.503 0.655 0
## 2 1 0.803 0.0308 0.742 0.863 1
##
##
## Contrasts:
## stat est se lower upper p
## 1 rd 0.224 0.0494 0.127 0.32 6.04e-06
## 2 rr 1.390 0.1070 1.190 1.61 2.22e-05
Compare the predictive performance of Cox models based on different sets of covariates with respect to their c-statistics on held-out data via k-fold cross validation.
# Simulate data.
n <- 1000
x1 <- rnorm(n)
x2 <- rnorm(n)
data <- SurvUtils::GenData(
covariates = cbind(x1, x2),
beta_event = c(1.0, -1.0),
simple = FALSE
)
# Evaluate.
eval <- CompreCoxCstat(
status = data$status,
time = data$time,
x1 = data %>% dplyr::select(x1, x2),
x2 = data %>% dplyr::select(x1)
)
head(round(eval, digits = 3))
## fold cstat1 cstat2 diff ratio
## 1 1 0.812 0.735 0.077 1.104
## 2 2 0.801 0.703 0.097 1.138
## 3 3 0.784 0.654 0.130 1.199
## 4 4 0.744 0.633 0.112 1.176
## 5 5 0.724 0.654 0.070 1.108
## 6 6 0.737 0.679 0.058 1.086
For a tutorial on influence functions and the perturbation bootstrap, see this vignette.
# Generate data.
arm1 <- SurvUtils::GenData(base_event_rate = 0.8)
arm1$arm <- 1
arm0 <- SurvUtils::GenData(base_event_rate = 1.0)
arm0$arm <- 0
data <- rbind(arm1, arm0)
x_breaks <- seq(from = 0.0, to = 4.0, by = 0.50)
data0 <- data %>% dplyr::filter(arm == 0)
fit0 <- Temporal::FitParaSurv(data0) # Optional parametric fit.
q_km <- SurvUtils::PlotOneSampleKM(data0, fit = fit0, x_breaks = x_breaks, x_max = 4)
q_nar <- SurvUtils::PlotOneSampleNARs(data0, x_breaks = x_breaks, x_max = 4)
cowplot::plot_grid(
plotlist = list(q_km, q_nar),
align = "v",
axis = "l",
ncol = 1,
rel_heights = c(3, 1)
)
x_breaks <- seq(from = 0.0, to = 4.0, by = 0.50)
data0 <- data %>% dplyr::filter(arm == 0)
q_auc <- SurvUtils::PlotOneSampleAUC(data0, x_breaks = x_breaks, x_max = 4, tau = 3)
q_nar <- SurvUtils::PlotOneSampleNARs(data0, x_breaks = x_breaks, x_max = 4)
cowplot::plot_grid(
plotlist = list(q_auc, q_nar),
align = "v",
axis = "l",
ncol = 1,
rel_heights = c(3, 1)
)
x_breaks <- seq(from = 0.0, to = 4.0, by = 0.50)
contrast <- Temporal::CompParaSurv(data) # Optional parametric fit.
q_km <- SurvUtils::PlotTwoSampleKM(data, contrast = contrast, x_breaks = x_breaks, x_max = 4)
q_nar <- SurvUtils::PlotTwoSampleNARs(data, x_breaks = x_breaks, x_max = 4)
cowplot::plot_grid(
plotlist = list(q_km, q_nar),
align = "v",
axis = "l",
ncol = 1,
rel_heights = c(3, 1)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.