# library(EnsembleRandomForests)
# ens_rf_ex <- ens_random_forests(df=simData$samples, var="obs",
# covariates=grep("cov",colnames(simData$samples),value=T),
# header = NULL,
# save=FALSE,
# out.folder=NULL,
# duplicate = TRUE,
# n.forests = 10L,
# importance = TRUE,
# ntree = 1000,
# mtry = 5,
# var.q = c(0.1,0.5,0.9),
# cores = parallel::detectCores()-2)
# drawFun <- function(data, holdout=0.1, return.ho=TRUE){
# #data is data.frame
# #holdout is proportion to holdout
# #return.ho is logical for returning the holdout or the rest
# nho <- floor(nrow(data)*holdout)
# samps <- sample.int(nrow(data),nho)
# if(return.ho){
# return(data[samps,])
# }else{
# return(data[-samps,])
# }
# }
# #first value is number of holdout datasets to make
# newdat <- replicate(5, erf_data_prep(df = drawFun(data=simData$samples), var = "obs",covariates = grep('cov',colnames(simData$samples), value=T),header = c('prob.raw','prob'), duplicate = TRUE),simplify=FALSE)
# ho.pred <- lapply(newdat, function(dat)sapply(ens_rf_ex$model,function(mod.l) predict(mod.l$mod,dat,type='prob')[,2]))
# ho.ens.pred <- sapply(ho.pred, rowMeans)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.