CytoNorm.normalize: normalizeClustered

View source: R/CytoNorm.R

CytoNorm.normalizeR Documentation

normalizeClustered

Description

Normalize data, given the batch effects learned from control samples per cell type/cluster (output from CytoNorm.train). New fcs files are written to the given output directory.

Usage

CytoNorm.normalize(
  model,
  files,
  labels,
  transformList,
  transformList.reverse,
  outputDir = ".",
  prefix = "Norm_",
  clean = TRUE,
  verbose = FALSE,
  normMethod.normalize = QuantileNorm.normalize,
  write = TRUE,
  ...
)

Arguments

model

Model of the batch effercts, as computed by CytoNorm.train

files

Full paths of the fcs files or a flowSet of the samples.

labels

A label for every file, indicating to which batch it belongs, e.g. the plate ID.

transformList

Transformation list to pass to the flowCore transform function

transformList.reverse

Transformation list with the reverse functions, so the normalized files can be saved in the untransformed space

outputDir

Directory to put the temporary files in. Default = "."

prefix

Prefix to put in front of the normalized file names. Default = "Norm_"

clean

If FALSE, temporary files describing the FlowSOM clusters seperately are not removed at the end. Default = TRUE.

verbose

If TRUE, progress updates are printed. Default = FALSE.

normMethod.normalize

Normalization method to use.

write

logical indicating whether the normalised samples should be written to new FCS files in a Normalized directory within outputDir, set to TRUE by default.

...

Additional arguments to pass to read.FCS

Value

a flowSet containing the normalised samples and optionally write FCS files to Normalized directory in outputDir.

See Also

CytoNorm.train

Examples



dir <- system.file("extdata", package = "CytoNorm")
files <- list.files(dir, pattern = "fcs$")
data <- data.frame(File = files,
                   Path = file.path(dir, files),
                   Type = stringr::str_match(files, "_([12]).fcs")[,2],
                   Batch = stringr::str_match(files, "PTLG[0-9]*")[,1],
                   stringsAsFactors = FALSE)
data$Type <- c("1" = "Train", "2" = "Validation")[data$Type]
train_data <- dplyr::filter(data, Type == "Train")
validation_data <- dplyr::filter(data, Type == "Validation")

ff <- flowCore::read.FCS(data$Path[1])
channels <- grep("Di$", flowCore::colnames(ff), value = TRUE)
transformList <- flowCore::transformList(channels,
                                         cytofTransform)
transformList.reverse <- flowCore::transformList(channels,
                                                 cytofTransform.reverse)

model <- CytoNorm.train(files = train_data$Path,
                        labels = train_data$Batch,
                        channels = channels,
                        transformList = transformList,
                        FlowSOM.params = list(nCells = 10000, #1000000
                                              xdim = 15,
                                              ydim = 15,
                                              nClus = 10,
                                              scale = FALSE),
                        normParams = list(nQ = 99),
                        seed = 1,
                        verbose = TRUE)

CytoNorm.normalize(model = model,
                   files = validation_data$Path,
                   labels = validation_data$Batch,
                   transformList = transformList,
                   transformList.reverse = transformList.reverse,
                   verbose = TRUE)


saeyslab/CytoNorm documentation built on Nov. 2, 2024, 12:39 p.m.