Maaslin2: MaAsLin2 is the next generation of MaAsLin, a multivariable...

Description Usage Arguments Value Author(s) Examples

View source: R/Maaslin2.R

Description

MaAsLin2 finds associations between microbiome meta-omics features and complex metadata in population-scale epidemiological studies. The software includes multiple analysis methods (including support for multiple covariates and repeated measures), filtering, normalization, and transform options to customize analysis for your specific study.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
Maaslin2(
    input_data,
    input_metadata,
    output,
    min_abundance = 0.0,
    min_prevalence = 0.1,
    min_variance = 0.0,
    normalization = "TSS",
    transform = "LOG",
    analysis_method = "LM",
    max_significance = 0.25,
    random_effects = NULL,
    fixed_effects = NULL,
    correction = "BH",
    standardize = TRUE,
    cores = 1,
    plot_heatmap = TRUE,
    plot_scatter = TRUE,
    heatmap_first_n = 50,
    reference = NULL
)

Arguments

input_data

The tab-delimited input file of features.

input_metadata

The tab-delimited input file of metadata.

output

The output folder to write results.

min_abundance

The minimum abundance for each feature.

min_prevalence

The minimum percent of samples for which a feature is detected at minimum abundance.

min_variance

Keep features with variance greater than.

max_significance

The q-value threshold for significance.

normalization

The normalization method to apply.

transform

The transform to apply.

analysis_method

The analysis method to apply.

random_effects

The random effects for the model, comma-delimited for multiple effects.

fixed_effects

The fixed effects for the model, comma-delimited for multiple effects.

correction

The correction method for computing the q-value.

standardize

Apply z-score so continuous metadata are on the same scale.

plot_heatmap

Generate a heatmap for the significant associations.

heatmap_first_n

In heatmap, plot top N features with significant associations.

plot_scatter

Generate scatter plots for the significant associations.

cores

The number of R processes to run in parallel.

reference

The factor to use as a reference for a variable with more than two levels provided as a string of 'variable,reference' semi-colon delimited for multiple variables.

Value

Data.frame containing the results from applying the model.

Author(s)

Himel Mallick<himel.stat.iitk@gmail.com>,
Ali Rahnavard<gholamali.rahnavard@gmail.com>,
Maintainers: Lauren McIver<lauren.j.mciver@gmail.com>,

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
    input_data <- system.file(
        'extdata','HMP2_taxonomy.tsv', package="Maaslin2")
    input_metadata <-system.file(
        'extdata','HMP2_metadata.tsv', package="Maaslin2")
    fit_data <- Maaslin2(
        input_data, input_metadata,'demo_output', transform = "AST",
        fixed_effects = c('diagnosis', 'dysbiosisnonIBD','dysbiosisUC','dysbiosisCD', 'antibiotics', 'age'),
        random_effects = c('site', 'subject'),
        normalization = 'NONE',
        reference = 'diagnosis,nonIBD',
        standardize = FALSE)

Maaslin2 documentation built on Nov. 8, 2020, 6:31 p.m.