mlp | R Documentation |
This function creates a multilayer perceptron (MLP) and trains it. MLPs are fully connected feedforward networks, and probably the most common network architecture in use. Training is usually performed by error backpropagation or a related procedure.
There are a lot of different learning functions present in SNNS that can be
used together with this function, e.g., Std_Backpropagation
,
BackpropBatch
, BackpropChunk
, BackpropMomentum
,
BackpropWeightDecay
, Rprop
, Quickprop
, SCG
(scaled conjugate gradient), ...
mlp(x, ...)
## Default S3 method:
mlp(
x,
y,
size = c(5),
maxit = 100,
initFunc = "Randomize_Weights",
initFuncParams = c(-0.3, 0.3),
learnFunc = "Std_Backpropagation",
learnFuncParams = c(0.2, 0),
updateFunc = "Topological_Order",
updateFuncParams = c(0),
hiddenActFunc = "Act_Logistic",
shufflePatterns = TRUE,
linOut = FALSE,
outputActFunc = if (linOut) "Act_Identity" else "Act_Logistic",
inputsTest = NULL,
targetsTest = NULL,
pruneFunc = NULL,
pruneFuncParams = NULL,
...
)
x |
a matrix with training inputs for the network |
... |
additional function parameters (currently not used) |
y |
the corresponding targets values |
size |
number of units in the hidden layer(s) |
maxit |
maximum of iterations to learn |
initFunc |
the initialization function to use |
initFuncParams |
the parameters for the initialization function |
learnFunc |
the learning function to use |
learnFuncParams |
the parameters for the learning function |
updateFunc |
the update function to use |
updateFuncParams |
the parameters for the update function |
the activation function of all hidden units | |
shufflePatterns |
should the patterns be shuffled? |
linOut |
sets the activation function of the output units to linear or logistic (ignored if outputActFunc is given) |
outputActFunc |
the activation function of all output units |
inputsTest |
a matrix with inputs to test the network |
targetsTest |
the corresponding targets for the test input |
pruneFunc |
the pruning function to use |
pruneFuncParams |
the parameters for the pruning function. Unlike the other functions, these have to be given in a named list. See the pruning demos for further explanation. |
Std_Backpropagation
, BackpropBatch
, e.g., have two parameters,
the learning rate and the maximum output difference. The learning rate is
usually a value between 0.1 and 1. It specifies the gradient descent step
width. The maximum difference defines, how much difference between output and
target value is treated as zero error, and not backpropagated. This parameter
is used to prevent overtraining. For a complete list of the parameters of all
the learning functions, see the SNNS User Manual, pp. 67.
The defaults that are set for initialization and update functions usually don't have to be changed.
an rsnns
object.
Rosenblatt, F. (1958), 'The perceptron: A probabilistic model for information storage and organization in the brain', Psychological Review 65(6), 386–408.
Rumelhart, D. E.; Clelland, J. L. M. & Group, P. R. (1986), Parallel distributed processing :explorations in the microstructure of cognition, Mit, Cambridge, MA etc.
Zell, A. et al. (1998), 'SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2', IPVR, University of Stuttgart and WSI, University of Tübingen. https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)
## Not run: demo(iris)
## Not run: demo(laser)
## Not run: demo(encoderSnnsCLib)
data(iris)
#shuffle the vector
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]
irisValues <- iris[,1:4]
irisTargets <- decodeClassLabels(iris[,5])
#irisTargets <- decodeClassLabels(iris[,5], valTrue=0.9, valFalse=0.1)
iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
iris <- normTrainingAndTestSet(iris)
model <- mlp(iris$inputsTrain, iris$targetsTrain, size=5, learnFuncParams=c(0.1),
maxit=50, inputsTest=iris$inputsTest, targetsTest=iris$targetsTest)
summary(model)
model
weightMatrix(model)
extractNetInfo(model)
par(mfrow=c(2,2))
plotIterativeError(model)
predictions <- predict(model,iris$inputsTest)
plotRegressionError(predictions[,2], iris$targetsTest[,2])
confusionMatrix(iris$targetsTrain,fitted.values(model))
confusionMatrix(iris$targetsTest,predictions)
plotROC(fitted.values(model)[,2], iris$targetsTrain[,2])
plotROC(predictions[,2], iris$targetsTest[,2])
#confusion matrix with 402040-method
confusionMatrix(iris$targetsTrain, encodeClassLabels(fitted.values(model),
method="402040", l=0.4, h=0.6))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.