View source: R/get_DaytTimeLimits.r
classify_DayTime | R Documentation |
Classifying the time period of the day based on the timing of sunrise, sunset (and twilight events) or alternatively, geolocation estimates, as specified in get_DayTimeLimits, that allow their internal estimation during the function call.
classify_DayTime(pos, twilight.set="ast")
pos |
A data.frame |
twilight.set |
character string, indicating the type of twilight used for the long daytime classifcation: |
The input data.frame pos
extended by the time vectors daytime
and daytime.long
. In the former case, "Day" and "Night" periods are distinguished. In the latter case, "Day", "Night", "Dawn" and "Dusk".
Robert K. Bauer
Meeus, J. (1991) Astronomical Algorithms. Willmann-Bell, Inc.
sunriset, crepuscule, get_DayTimeLimits
#### example 1) estimate current times of dawn, sunrise, dusk and sunset in Mainz, Germany:
pos <- data.frame(Lat=8.2667, Lon=50)
pos$datetime <- strptime(Sys.Date(),"%Y-%m-%d")
get_DayTimeLimits(pos)
#### example 1b) classify current ime of the day in Mainz, Germany:
classify_DayTime(get_DayTimeLimits(pos))
## convert 1c) back-to-back histogram showing day vs night TAD frequencies:
### load sample depth and temperature time series data from miniPAT:
ts_file <- system.file("example_files/104659-Series.csv",package="RchivalTag")
ts_df <- read.table(ts_file, header = TRUE, sep = ",")
tad_breaks <- c(0, 2, 5, 10, 20, 50, 100, 200, 300, 400, 600, 2000)
ts_df$Lat <- 4; ts_df$Lon=42.5 ## required geolocations to estimate daytime
ts_df$datetime <- strptime(paste(ts_df$Day,ts_df$Time),"%d-%B-%Y %H:%M:%S")
head(ts_df)
ts_df2 <- classify_DayTime(get_DayTimeLimits(ts_df)) # estimate daytime
head(ts_df2)
ts2histos(ts_df2, tad_breaks = tad_breaks,split_by = "daytime")
hist_tad(ts_df2, bin_breaks = tad_breaks,split_by = "daytime", do_mid.ticks = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.