View source: R/get_path_pair.R
get_path_pair | R Documentation |
Compute shortest path between origin and destination nodes.
get_path_pair( Graph, from, to, algorithm = "bi", constant = 1, keep = NULL, long = FALSE )
Graph |
An object generated by makegraph, cpp_simplify or cpp_contract function. |
from |
A vector of one or more vertices from which shortest paths are calculated (origin). |
to |
A vector of one or more vertices (destination). |
algorithm |
character. |
constant |
numeric. Constant to maintain the heuristic function admissible in A* and NBA algorithms. |
keep |
numeric or character. Vertices of interest that will be returned. |
long |
logical. If |
If graph is not contracted, the user has the choice between :
unidirectional Dijkstra (Dijkstra
)
A star (A*
) : projected coordinates should be provided
bidirectional Dijkstra (bi
)
New bi-directional A star (NBA
) : projected coordinates should be provided
If the input graph has been contracted by cpp_contract function, the algorithm is a modified bidirectional search.
In A*
and NBA
algorithms, euclidean distance is used as heuristic function.
All algorithms are multithreaded. Please use RcppParallel::setThreadOptions()
to set the number of threads.
To understand the importance of constant parameter, see the package description : https://github.com/vlarmet/cppRouting/blob/master/README.md
list
or a data.frame
containing shortest path nodes between from and to.
from
and from
must be the same length.
get_multi_paths, get_isochrone, get_detour
#Choose number of cores used by cppRouting RcppParallel::setThreadOptions(numThreads = 1) #Data describing edges of the graph edges<-data.frame(from_vertex=c(0,0,1,1,2,2,3,4,4), to_vertex=c(1,3,2,4,4,5,1,3,5), cost=c(9,2,11,3,5,12,4,1,6)) #Get all nodes nodes<-unique(c(edges$from_vertex,edges$to_vertex)) #Construct directed and undirected graph directed_graph<-makegraph(edges,directed=TRUE) non_directed<-makegraph(edges,directed=FALSE) #Sampling origin and destination nodes origin<-sample(nodes,10,replace=TRUE) destination<-sample(nodes,10,replace=TRUE) #Get distance between origin and destination in the two graphs dir_paths<-get_path_pair(Graph=directed_graph, from=origin, to=destination) non_dir_paths<-get_path_pair(Graph=non_directed, from=origin, to=destination) print(dir_paths) print(non_dir_paths)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.