edina: EDINA Estimation Routine

Description Usage Arguments Value See Also Examples

View source: R/edina.R

Description

Performs the Exploratory Deterministic Input, Noise and Gate Model (EDINA) estimation on a given data set with a prespecified k value.

Usage

1
edina(data, k = 3, burnin = 10000, chain_length = 20000)

Arguments

data

Binary responses to assessments in matrix form with dimensions N x J.

k

Number of Attribute Levels as a positive integer.

burnin

Number of Observations to discard on the chain.

chain_length

Length of the MCMC chain

Value

An edina object that contains:

See Also

auto_edina(), summary.edina(), print.edina()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
if(requireNamespace("simcdm", quietly = TRUE)) {

# Set a seed for reproducibility
set.seed(1512)

# Setup data simulation parameters
N = 1    # Number of Examinees / Subjects
J = 10   # Number of Items
K = 2    # Number of Skills / Attributes

# Note:
# Sample size and attributes have been reduced to create a minimally
# viable example that can be run during CRAN's automatic check.
# Please make sure to have a larger sample size...

# Assign slipping and guessing values for each item
ss = gs = rep(.2, J)

# Simulate an identifiable Q matrix
Q = simcdm::sim_q_matrix(J, K)

# Simulate subject attributes
subject_alphas = simcdm::sim_subject_attributes(N, K)

# Simulate items under the DINA model
items_dina = simcdm::sim_dina_items(subject_alphas, Q, ss, gs)

# Compute the edina model
edina_model = edina(items_dina, k = K)

# Display results
edina_model

# Provide a summary overview
summary(edina_model)
}

edina documentation built on March 26, 2020, 9:30 p.m.