Description Usage Arguments Value See Also Examples
View source: R/vis-auto-edina.R
Presents either the fitting of model heuristics or the evolution of parameters on a graph
1 2 3 4 5 6 |
object |
An |
type |
Kind of graph to display. Valid types: |
... |
Not used. |
A ggplot2
object.
auto_edina()
,
best_model()
,
model_selection_graph()
,
parameter_evolution_graph()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | if(requireNamespace("simcdm", quietly = TRUE)) {
# Set a seed for reproducibility
set.seed(1512)
# Setup data simulation parameters
N = 2 # Number of Examinees / Subjects
J = 10 # Number of Items
K = 2 # Number of Skills / Attributes
# Note:
# Sample size and attributes have been reduced to create a minimally
# viable example that can be run during CRAN's automatic check.
# Please make sure to have a larger sample size...
# Assign slipping and guessing values for each item
ss = gs = rep(.2, J)
# Simulate an identifiable Q matrix
Q = simcdm::sim_q_matrix(J, K)
# Simulate subject attributes
subject_alphas = simcdm::sim_subject_attributes(N, K)
# Simulate items under the DINA model
items_dina = simcdm::sim_dina_items(subject_alphas, Q, ss, gs)
# Requires at least 15 seconds of execution time.
# Three EDINA models will be fit with increasing number of attributes.
model_set_edina = auto_edina(items_dina, k = 2:4)
# Visualize results results
autoplot(model_set_edina, type = "selection")
# Equivalent to:
model_selection_graph(model_set_edina)
# View model parameters
autoplot(model_set_edina, type = "guessing")
# Or directly call with:
parameter_evolution_graph(model_set_edina, type = "guessing")
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.