Description Usage Arguments Details Value Author(s) References Examples
Visualise sequential distributions using a range of plotting styles.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | fan(data = NULL, data.type="simulations", style = "fan", type = "percentile",
probs = if(type=="percentile") seq(0.01, 0.99, 0.01) else c(0.5, 0.8, 0.95),
start = 1, frequency = 1, anchor = NULL, anchor.time=NULL,
fan.col = heat.colors, alpha = if (style == "spaghetti") 0.5 else 1,
n.fan = NULL,
ln = if(length(probs)<10) probs else
probs[round(probs,2) %in% round(seq(0.1, 0.9, 0.1),2)],
ln.col = if(style=="spaghetti") "gray" else NULL,
med.ln = if(type=="interval") TRUE else FALSE,
med.col= "orange",
rlab = ln, rpos = 4, roffset = 0.1, rcex = 0.8, rcol = NULL,
llab = FALSE, lpos = 2, loffset = roffset, lcex = rcex, lcol = rcol,
upplab = "U", lowlab = "L", medlab=if(type == "interval") "M" else NULL,
n.spag = 30,
space = if(style=="boxplot") 1/frequency else 0.9/frequency,
add = FALSE, ylim = range(data)*0.8, ...)
fan0(data = NULL, data.type = "simulations", style = "fan", type = "percentile",
probs = if(type=="percentile") seq(0.01, 0.99, 0.01) else c(0.5, 0.8, 0.95),
start = 1, frequency = 1, anchor = NULL, anchor.time=NULL,
fan.col = heat.colors, alpha = if (style == "spaghetti") 0.5 else 1,
n.fan = NULL,
ln = NULL,
ln.col = if(style=="spaghetti") "gray" else NULL,
med.ln = if(type=="interval") TRUE else FALSE,
med.col= "orange",
rlab = ln, rpos = 4, roffset = 0.1, rcex = 0.8, rcol = NULL,
llab = FALSE, lpos = 2, loffset = roffset, lcex = rcex, lcol = rcol,
upplab = "U", lowlab = "L", medlab=if(type == "interval") "M" else NULL,
n.spag = 30,
space = if(style=="boxplot") 1/frequency else 0.9/frequency,
add = TRUE, ylim = range(data)*0.8, ...)
|
data |
Set of sequential simulation data, where rows represent simulation number and columns represent some form of time index.
If Data can take multiple classes, where the contents are converted to a |
data.type |
Indicates if |
style |
Plot style, choose from |
type |
Type of percentiles to plot in |
probs |
Probabilities related to percentiles or prediction intervals to be plotted (dependent on the |
start |
The time of the first distribution in |
frequency |
The number of distribution in |
anchor |
Optional data value to anchor a forecast fan on. Typically this will be the last observation of the observed data series. |
anchor.time |
Optional data value for the time of the anchor. Useful for irregular time series. |
fan.col |
Palette of colours used in the |
n.fan |
The number of colours to use in the fan. |
alpha |
Factor modifying the opacity alpha; typically in [0,1]. |
ln |
Vector of number to plot contour lines on-top |
med.ln |
Add a median line to fan. Might be of particular use if |
ln.col |
Line colour to be imposed on top of the fan. By default takes the darkest colour from |
med.col |
Median Line colour. By default this is set to the first colour in |
rlab |
Vector of labels at the end (right) of corresponding percentiles or prediction intervals of the |
rpos |
Position of right labels for the |
roffset |
Offset of right labels for the |
rcex |
Text size of right labels for the |
rcol |
Colour of text for right labels for the |
llab |
Can take either 1) a |
lpos |
Position of left labels for the |
loffset |
Offset of left labels for the |
lcex |
Text size of left labels for the |
lcol |
Colour of text for left labels for the |
upplab |
Prefix character string for upper labels to be used for the |
lowlab |
Prefix character string for lower labels to be used for the |
medlab |
Character string for median label. |
n.spag |
Number of simulations to plot in the |
space |
Space between boxes in the |
add |
Add to active plot. By default |
ylim |
Passed to |
... |
Additional arguments passed to |
Visualise sequential distributions using a range of plotting styles. Sequential distribution data can be input as either simulations or pre-computed values over time (columns). For the later, the user should declare input data as percentiles by setting data.type = "values"
. Plots are added to existing graphic devices. Users can choose from four different styles.
The fan
and boxfan
style plot distributions based on used-defined shading scheme, controlled by the fan.col
argument. Additional lines and text are added to illustrate major contours on the probability distribution. Lines and labels can be suppressed by adding ln = NULL
and rlab = NULL
. Labels to the left of the fan can also be specified using the llab
argument. Colours are by default taken from the heat.colors
palette. Alternatives can be specified using fan.col
(see the example below). The joining of a forecast fan to data is controlled be the anchor argument.
The spaghetti
style, plots random draws (when data.type = "simulations"
is set) along the sequence of distributions. The number of draws is controlled by the n.spag
argument. The transparency of the lines is controlled by alpha
.
The boxplot
style, adds a box plot for simulated data at the appropriate location, according to the start
and frquency
arguments. Gaps between box plots are controlled by space
argument. Additional arguments are passed to boxplot
.
See details
Guy J. Abel
Abel, G. J. (2015). fanplot: An R Package for visualising sequential distributions. The R Journal 7 (2) 15–23.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | ##
## Basic Fan: fan0()
##
fan0(th.mcmc)
##
## Basic Fan: fan()
##
# empty plot
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc)*0.85)
# add fan
fan(th.mcmc)
##
## 20 or so examples of fan charts and
## spaghetti plots based on the th.mcmc object
##
## Make sure you have zoo, tsbugs, RColorBrewer and
## colorspace packages installed
##
## Not run:
# demo("sv_fan", "fanplot")
## End(Not run)
##
## Fans for forecasted values
##
## Not run:
#create time series
net <- ts(ips$net, start=1975)
# fit model
library("forecast")
m <- auto.arima(net)
# plot in forecast package (limited customisation possible)
plot(forecast(m, h=5))
# another plot in forecast (with some customisation, no
# labels or anchoring possible at the moment)
plot(forecast(m, h=5, level=c(50,80,95)),
shadecols=rev(heat.colors(3)))
# simulate future values
mm <- matrix(NA, nrow=1000, ncol=5)
for(i in 1:1000)
mm[i,] <- simulate(m, nsim=5)
# interval fan chart
plot(net, xlim=c(1975,2020), ylim=c(-100,300))
fan(mm, type="interval", start=2013)
# anchor fan chart
plot(net, xlim=c(1975,2020), ylim=c(-100,300))
fan(mm, type="interval", start=2013,
anchor=net[time(net)==2012])
# anchor spaghetti plot with underlying fan chart
plot(net, xlim=c(1975,2020), ylim=c(-100,300))
fan(mm, type="interval", start=2013,
anchor=net[time(net)==2012], alpha=0, ln.col="orange")
fan(mm, type="interval", start=2013,
anchor=net[time(net)==2012], alpha=0.5, style="spaghetti")
## End(Not run)
##
## Box Plots
##
# sample every 21st day of theta_t
th.mcmc21 <- th.mcmc[, seq(1, 945, 21)]
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21))
fan(th.mcmc21, style = "boxplot", frequency = 1/21)
# additional arguments for boxplot
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21))
fan(th.mcmc21, style = "boxplot", frequency = 1/21,
outline = FALSE, col = "red", notch = TRUE)
##
## Fan Boxes
##
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21))
fan(th.mcmc21, style = "boxfan", type = "interval", frequency = 1/21)
# more space between boxes
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21))
fan(th.mcmc21, style = "boxfan", type = "interval",
frequency = 1/21, space = 10)
# overlay spaghetti
fan(th.mcmc21, style = "spaghetti",
frequency = 1/21, n.spag = 50, ln.col = "red", alpha=0.2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.