svdr | R Documentation |
The randomized method for truncated SVD by P. G. Martinsson and colleagues
finds a few approximate largest singular values and corresponding
singular vectors of a sparse or dense matrix. It is a fast and
memory-efficient way to compute a partial SVD, similar in performance
for many problems to irlba
. The svdr
method
is a block method and may produce more accurate estimations with
less work for problems with clustered large singular values (see
the examples). In other problems, irlba
may exhibit faster
convergence.
svdr(x, k, tol = 1e-05, it = 100L, extra = min(10L, dim(x) - k), center = NULL, Q = NULL, return.Q = FALSE)
x |
numeric real- or complex-valued matrix or real-valued sparse matrix. |
k |
dimension of subspace to estimate (number of approximate singular values to compute). |
tol |
stop iteration when the largest absolute relative change in estimated singular values from one iteration to the next falls below this value. |
it |
maximum number of algorithm iterations. |
extra |
number of extra vectors of dimension |
center |
optional column centering vector whose values are implicitly subtracted from each
column of |
Q |
optional initial random matrix, defaults to a matrix of size |
return.Q |
if |
Also see an alternate implementation (rsvd
) of this method by N. Benjamin Erichson
in the https://cran.r-project.org/package=rsvd package.
Returns a list with entries:
k approximate singular values
k approximate left singular vectors
k approximate right singular vectors
total number of matrix products carried out
optional subspace matrix (when return.Q=TRUE
)
Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions N. Halko, P. G. Martinsson, J. Tropp. Sep. 2009.
irlba
, svd
, rsvd
in the rsvd package
set.seed(1) A <- matrix(runif(400), nrow=20) svdr(A, 3)$d # Compare with svd svd(A)$d[1:3] # Compare with irlba irlba(A, 3)$d ## Not run: # A problem with clustered large singular values where svdr out-performs irlba. tprolate <- function(n, w=0.25) { a <- rep(0, n) a[1] <- 2 * w a[2:n] <- sin( 2 * pi * w * (1:(n-1)) ) / ( pi * (1:(n-1)) ) toeplitz(a) } x <- tprolate(512) set.seed(1) tL <- system.time(L <- irlba(x, 20)) tR <- system.time(R <- svdr(x, 20)) S <- svd(x) plot(S$d) data.frame(time=c(tL[3], tR[3]), error=sqrt(c(crossprod(L$d - S$d[1:20]), crossprod(R$d - S$d[1:20]))), row.names=c("IRLBA", "Randomized SVD")) # But, here is a similar problem with clustered singular values where svdr # doesn't out-perform irlba as easily...clusters of singular values are, # in general, very hard to deal with! # (This example based on https://github.com/bwlewis/irlba/issues/16.) set.seed(1) s <- svd(matrix(rnorm(200 * 200), 200)) x <- s$u %*% (c(exp(-(1:100)^0.3) * 1e-12 + 1, rep(0.5, 100)) * t(s$v)) tL <- system.time(L <- irlba(x, 5)) tR <- system.time(R <- svdr(x, 5)) S <- svd(x) plot(S$d) data.frame(time=c(tL[3], tR[3]), error=sqrt(c(crossprod(L$d - S$d[1:5]), crossprod(R$d - S$d[1:5]))), row.names=c("IRLBA", "Randomized SVD")) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.