sits_smooth | R Documentation |
Takes a set of classified raster layers with probabilities,
whose metadata is]created by sits_cube
,
and applies a Bayesian smoothing function.
sits_smooth(
cube,
window_size = 7L,
neigh_fraction = 0.5,
smoothness = 10L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1"
)
## S3 method for class 'probs_cube'
sits_smooth(
cube,
window_size = 7L,
neigh_fraction = 0.5,
smoothness = 10L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1"
)
## S3 method for class 'raster_cube'
sits_smooth(
cube,
window_size = 7L,
neigh_fraction = 0.5,
smoothness = 10L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1"
)
## S3 method for class 'derived_cube'
sits_smooth(
cube,
window_size = 7L,
neigh_fraction = 0.5,
smoothness = 10L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1"
)
## Default S3 method:
sits_smooth(
cube,
window_size = 7L,
neigh_fraction = 0.5,
smoothness = 10L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1"
)
cube |
Probability data cube. |
window_size |
Size of the neighborhood (integer, min = 3, max = 21) |
neigh_fraction |
Fraction of neighbors with high probabilities to be used in Bayesian inference. (numeric, min = 0.1, max = 1.0) |
smoothness |
Estimated variance of logit of class probabilities (Bayesian smoothing parameter) (integer vector or scalar, min = 1, max = 200). |
memsize |
Memory available for classification in GB (integer, min = 1, max = 16384). |
multicores |
Number of cores to be used for classification (integer, min = 1, max = 2048). |
output_dir |
Valid directory for output file. (character vector of length 1). |
version |
Version of the output (character vector of length 1). |
A data cube.
Gilberto Camara, gilberto.camara@inpe.br
Rolf Simoes, rolf.simoes@inpe.br
if (sits_run_examples()) {
# create am xgboost model
xgb_model <- sits_train(samples_modis_ndvi, sits_xgboost())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = xgb_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(
bayes_cube,
output_dir = tempdir()
)
# plot the labelled cube
plot(label_cube)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.