View source: R/ts_norm_gminmax.R
| ts_norm_gminmax | R Documentation |
Rescale values so the global minimum maps to 0 and the global maximum maps to 1 over the training set.
ts_norm_gminmax(outliers = outliers_boxplot())
outliers |
Indicate outliers transformation class. NULL can avoid outliers removal. |
The same scaling is applied to inputs and inverted on predictions
via inverse_transform.
A ts_norm_gminmax object.
Ogasawara, E., Murta, L., Zimbrão, G., Mattoso, M. (2009). Neural networks cartridges for data mining on time series. Proceedings of the International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2009.5178615
# Global min–max normalization across the full training set
# Load package and example data
library(daltoolbox)
data(tsd)
# Build 10-lag windows and preview raw scale
ts <- ts_data(tsd$y, 10)
ts_head(ts, 3)
summary(ts[,10])
# Fit global min–max and transform; inspect post-scale values
preproc <- ts_norm_gminmax()
preproc <- fit(preproc, ts)
tst <- transform(preproc, ts)
ts_head(tst, 3)
summary(tst[,10])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.