zinbModel: Initialize an object of class ZinbModel

Description Usage Arguments Details Value Examples

View source: R/helper_methods.R

Description

Initialize an object of class ZinbModel

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
zinbModel(
  X,
  V,
  O_mu,
  O_pi,
  which_X_mu,
  which_X_pi,
  which_V_mu,
  which_V_pi,
  W,
  beta_mu,
  beta_pi,
  gamma_mu,
  gamma_pi,
  alpha_mu,
  alpha_pi,
  zeta,
  epsilon,
  epsilon_beta_mu,
  epsilon_gamma_mu,
  epsilon_beta_pi,
  epsilon_gamma_pi,
  epsilon_W,
  epsilon_alpha,
  epsilon_zeta,
  epsilon_min_logit,
  n,
  J,
  K
)

Arguments

X

matrix. The design matrix containing sample-level covariates, one sample per row.

V

matrix. The design matrix containing gene-level covariates, one gene per row.

O_mu

matrix. The offset matrix for mu.

O_pi

matrix. The offset matrix for pi.

which_X_mu

integer. Indeces of which columns of X to use in the regression of mu.

which_X_pi

integer. Indeces of which columns of X to use in the regression of pi.

which_V_mu

integer. Indeces of which columns of V to use in the regression of mu.

which_V_pi

integer. Indeces of which columns of V to use in the regression of pi.

W

matrix. The factors of sample-level latent factors.

beta_mu

matrix or NULL. The coefficients of X in the regression of mu.

beta_pi

matrix or NULL. The coefficients of X in the regression of pi.

gamma_mu

matrix or NULL. The coefficients of V in the regression of mu.

gamma_pi

matrix or NULL. The coefficients of V in the regression of pi.

alpha_mu

matrix or NULL. The coefficients of W in the regression of mu.

alpha_pi

matrix or NULL. The coefficients of W in the regression of pi.

zeta

numeric. A vector of log of inverse dispersion parameters.

epsilon

nonnegative scalar. Regularization parameter.

epsilon_beta_mu

nonnegative scalar. Regularization parameter for beta_mu.

epsilon_gamma_mu

nonnegative scalar. Regularization parameter for gamma_mu.

epsilon_beta_pi

nonnegative scalar. Regularization parameter for beta_pi.

epsilon_gamma_pi

nonnegative scalar. Regularization parameter for gamma_pi.

epsilon_W

nonnegative scalar. Regularization parameter for W.

epsilon_alpha

nonnegative scalar. Regularization parameter for alpha (both alpha_mu and alpha_pi).

epsilon_zeta

nonnegative scalar. Regularization parameter for zeta.

epsilon_min_logit

scalar. Minimum regularization parameter for parameters of the logit model, including the intercept.

n

integer. Number of samples.

J

integer. Number of genes.

K

integer. Number of latent factors.

Details

This is a wrapper around the new() function to create an instance of class ZinbModel. Rarely, the user will need to create a ZinbModel object from scratch, as tipically this is the result of zinbFit.

If any of X, V, W matrices are passed, n, J, and K are inferred. Alternatively, the user can specify one or more of n, J, and K.

The regularization parameters can be set by a unique parameter epsilon or specific values for the different regularization parameters can also be provided. If only epsilon is specified, the other parameters take the following values:

We empirically found that large values of epsilon provide a more stable estimation of W.

A call with no argument has the following default values: n = 50, J = 100, K = 0, epsilon=J.

Although it is possible to create new instances of the class by calling this function, this is not the most common way of creating ZinbModel objects. The main use of the class is within the zinbFit function.

Value

an object of class ZinbModel.

Examples

1
2
3
4

zinbwave documentation built on Nov. 8, 2020, 8:11 p.m.